Advertisement

Journal of High Energy Physics

, 2010:68 | Cite as

Automation of the matrix element reweighting method

  • Pierre Artoisenet
  • Vincent Lemaître
  • Fabio Maltoni
  • Olivier MattelaerEmail author
Article

Abstract

Matrix element reweighting is a powerful experimental technique widely employed to maximize the amount of information that can be extracted from a collider data set. We present a procedure that allows to automatically evaluate the weights for any process of interest in the standard model and beyond. Given the initial, intermediate and final state particles, and the transfer functions for the final physics objects, such as leptons, jets, missing transverse energy, our algorithm creates a phase-space mapping designed to efficiently perform the integration of the squared matrix element and the transfer functions. The implementation builds up on MadGraph, it is completely automatized and publicly available. A few sample applications are presented that show the capabilities of the code and illustrate the possibilities for new studies that such an approach opens up.

Keywords

Higgs Physics Beyond Standard Model Supersymmetric Standard Model Standard Model 

References

  1. [1]
    C.G. Lester and D.J. Summers, Measuring masses of semiinvisibly decaying particles pair produced at hadron colliders, Phys. Lett. B 463 (1999) 99 [hep-ph/9906349] [SPIRES].ADSGoogle Scholar
  2. [2]
    A. Barr, C. Lester and P. Stephens, m T2 : the truth behind the glamour, J. Phys. G 29 (2003) 2343 [hep-ph/0304226] [SPIRES].ADSGoogle Scholar
  3. [3]
    A.J. Barr and C.G. Lester, A review of the mass measurement techniques proposed for the Large Hadron Collider, J. Phys. G 37 (2010) 123001 [arXiv:1004.2732] [SPIRES].ADSGoogle Scholar
  4. [4]
    K. Kondo, Dynamical likelihood method for reconstruction of events with missing momentum. 1: method and toy models events with missing momentum, J. Phys. Soc. Jap. 57 (1988) 4126.CrossRefADSGoogle Scholar
  5. [5]
    K. Kondo, Dynamical likelihood method for reconstruction of events with missing momentum. 2: mass spectra for 2 → 2 processes, J. Phys. Soc. Jap. 60 (1991) 836.CrossRefADSGoogle Scholar
  6. [6]
    K. Kondo, T. Chikamatsu and S.H. Kim, Dynamical likelihood method for reconstruction of events with missing momentum. 3: analysis of a CDF high p T eμ event as \( t\bar{t} \) production, J. Phys. Soc. Jap. 62 (1993) 1177.CrossRefADSGoogle Scholar
  7. [7]
    R.H. Dalitz and G.R. Goldstein, The decay and polarization properties of the top quark, Phys. Rev. D 45 (1992) 1531 [SPIRES].ADSGoogle Scholar
  8. [8]
    R.H. Dalitz and G.R. Goldstein, Analysis of top-antitop production and dilepton decay events and the top quark mass, Phys. Lett. B 287 (1992) 225 [SPIRES].ADSGoogle Scholar
  9. [9]
    G.R. Goldstein, K. Sliwa and R.H. Dalitz, On observing top quark production at the Tevatron, Phys. Rev. D 47 (1993) 967 [hep-ph/9205246] [SPIRES].ADSGoogle Scholar
  10. [10]
    R.H. Dalitz and G.R. Goldstein, Where is top?, Int. J. Mod. Phys. A9 (1994) 635 [hep-ph/9308345] [SPIRES].ADSGoogle Scholar
  11. [11]
    D0 collaboration, V.M. Abazov et al., A precision measurement of the mass of the top quark, Nature 429 (2004) 638 [hep-ex/0406031] [SPIRES].CrossRefADSGoogle Scholar
  12. [12]
    D0 collaboration, V.M. Abazov et al., Measurement of the top quark mass in the lepton + jets final state with the matrix element method, Phys. Rev. D 74 (2006) 092005 [hep-ex/0609053] [SPIRES].ADSGoogle Scholar
  13. [13]
    CDF collaboration, A. Abulencia et al., Precise measurement of the top quark mass in the lepton+jets topology at CDF II, Phys. Rev. Lett. 99 (2007) 182002 [hep-ex/0703045] [SPIRES].CrossRefADSGoogle Scholar
  14. [14]
    CDF-Run II collaboration, A. Abulencia et al., Precision measurement of the top quark mass from dilepton events at CDF II, Phys. Rev. D 75 (2007) 031105 [hep-ex/0612060] [SPIRES].ADSGoogle Scholar
  15. [15]
    D0 collaboration, V.M. Abazov et al., Measurement of the top quark mass in the dilepton channel, Phys. Lett. B 655 (2007) 7 [hep-ex/0609056] [SPIRES].ADSGoogle Scholar
  16. [16]
    CDF collaboration, T. Aaltonen et al., First observation of electroweak single top quark production, Phys. Rev. Lett. 103 (2009) 092002 [arXiv:0903.0885] [SPIRES].CrossRefADSGoogle Scholar
  17. [17]
    D0 collaboration, V.M. Abazov et al., Observation of single top-quark production, Phys. Rev. Lett. 103 (2009) 092001 [arXiv:0903.0850] [SPIRES].CrossRefADSGoogle Scholar
  18. [18]
    CDF and D0 collaboration, Combined CDF and D0 upper limits on standard model Higgs-boson production with up to 4.2 fb −1 of data, arXiv:0903.4001 [SPIRES].
  19. [19]
    CDF and D0 collaboration, Combined CDF and D0 upper limits on standard model Higgs-boson production with up to 6.7 fb −1 of data, arXiv:1007.4587 [SPIRES].
  20. [20]
    E. Byckling and K. Kajantie, Reductions of the phase-space integral in terms of simpler processes, Phys. Rev. 187 (1969) 2008 [SPIRES].CrossRefADSGoogle Scholar
  21. [21]
    R. Kleiss and R. Pittau, Weight optimization in multichannel Monte Carlo, Comput. Phys. Commun. 83 (1994) 141 [hep-ph/9405257] [SPIRES].CrossRefADSGoogle Scholar
  22. [22]
    F. Maltoni and T. Stelzer, MadEvent: automatic event generation with MadGraph, JHEP 02 (2003) 027 [hep-ph/0208156] [SPIRES].CrossRefADSGoogle Scholar
  23. [23]
    G.P. Lepage, VEGAS: an adaptive multidimensional integration program, CLNS-80/447.Google Scholar
  24. [24]
    D0 collaboration, V.M. Abazov et al., Helicity of the W boson in lepton + jets \( t\bar{t} \) events, Phys. Lett. B 617 (2005) 1 [hep-ex/0404040] [SPIRES].ADSGoogle Scholar
  25. [25]
    J. Alwall et al., MadGraph/MadEvent v4: the new web generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [SPIRES].CrossRefADSGoogle Scholar
  26. [26]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [SPIRES].CrossRefADSGoogle Scholar
  27. [27]
  28. [28]
    S. Catani, Y.L. Dokshitzer, M.H. Seymour and B.R. Webber, Longitudinally invariant K t clustering algorithms for hadron hadron collisions, Nucl. Phys. B 406 (1993) 187 [SPIRES].CrossRefADSGoogle Scholar
  29. [29]
    S.D. Ellis and D.E. Soper, Successive combination jet algorithm for hadron collisions, Phys. Rev. D 48 (1993) 3160 [hep-ph/9305266] [SPIRES].ADSGoogle Scholar
  30. [30]
    M. Cacciari and G.P. Salam, Dispelling the N 3 myth for the k t jet-finder, Phys. Lett. B 641 (2006) 57 [hep-ph/0512210] [SPIRES].ADSGoogle Scholar
  31. [31]
    J. Alwall, A. Freitas and O. Mattelaer, The matrix element method and QCD radiation, arXiv:1010. 2263 [SPIRES].
  32. [32]
    K. Cranmer and T. Plehn, Maximum significance at the LHC and Higgs decays to muons, Eur. Phys. J. C 51 (2007) 415 [hep-ph/0605268] [SPIRES].CrossRefADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  • Pierre Artoisenet
    • 1
  • Vincent Lemaître
    • 2
  • Fabio Maltoni
    • 2
  • Olivier Mattelaer
    • 2
    • 3
    • 4
    Email author
  1. 1.Physics DepartmentThe Ohio State UniversityColumbusU.S.A.
  2. 2.Centre for Cosmology, Particle Physics and Phenomenology (CP3)Université Catholique de LouvainLouvain-la-NeuveBelgium
  3. 3.INFN — Sezione di Roma TreRomaItaly
  4. 4.Dipartimento di Fisica “Edoardo Amaldi”Università degli Studi Roma TreRomaItaly

Personalised recommendations