Advertisement

Journal of High Energy Physics

, 2010:52 | Cite as

E7(7) symmetry in perturbatively quantised \( \mathcal{N} = 8 \) supergravity

  • Guillaume BossardEmail author
  • Christian Hillmann
  • Hermann Nicolai
Open Access
Article

Abstract

We study the perturbative quantisation of \( \mathcal{N} = 8 \) supergravity in a formulation where its E 7(7) symmetry is realised off-shell. Relying on the cancellation of SU(8) current anomalies we show that there are no anomalies for the non-linearly realised E 7(7) either; this result extends to all orders in perturbation theory. As a consequence, the \( {\mathfrak{e}_{7(7)}} \) Ward identities can be consistently implemented and imposed at all orders in perturbation theory, and therefore potential divergent counterterms must in particular respect the full non-linear E 7(7) symmetry.

Keywords

Supergravity Models Anomalies in Field and String Theories BRST Quantization 

References

  1. [1]
    E. Cremmer and B. Julia, The SO(8) supergravity, Nucl. Phys. B 159 (1979) 141 [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  2. [2]
    B. de Wit and H. Nicolai, \( \mathcal{N} = 8 \) supergravity, Nucl. Phys. B 208 (1982) 323 [SPIRES].CrossRefADSGoogle Scholar
  3. [3]
    R.E. Kallosh, Counterterms in extended supergravities, Phys. Lett. B 99 (1981) 122 [SPIRES].ADSMathSciNetGoogle Scholar
  4. [4]
    P.S. Howe, K.S. Stelle and P.K. Townsend, Superactions, Nucl. Phys. B 191 (1981) 445 [SPIRES].CrossRefADSGoogle Scholar
  5. [5]
    Z. Bern, J.J. Carrasco, L.J. Dixon, H. Johansson, D.A. Kosower and R. Roiban, Three-loop superfiniteness of \( \mathcal{N} = 8 \) supergravity, Phys. Rev. Lett. 98 (2007) 161303 [hep-th/0702112] [SPIRES].CrossRefADSGoogle Scholar
  6. [6]
    Z. Bern, J.J. Carrasco, L.J. Dixon, H. Johansson and R. Roiban, The ultraviolet behavior of N = 8 supergravity at four loops, Phys. Rev. Lett. 103 (2009) 081301 [arXiv:0905.2326] [SPIRES].CrossRefADSGoogle Scholar
  7. [7]
    G. Bossard, P.S. Howe and K.S. Stelle, A note on the UV behaviour of maximally supersymmetric Yang-Mills theories, Phys. Lett. B 682 (2009) 137 [arXiv:0908.3883] [SPIRES].ADSMathSciNetGoogle Scholar
  8. [8]
    M.B. Green, J.G. Russo and P. Vanhove, Automorphic properties of low energy string amplitudes in various dimensions, Phys. Rev. D 81 (2010) 086008 [arXiv:1001.2535] [SPIRES].ADSMathSciNetGoogle Scholar
  9. [9]
    B. Pioline, R 4 couplings and automorphic unipotent representations, JHEP 03 (2010) 116 [arXiv:1001.3647] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  10. [10]
    M. Henneaux and C. Teitelboim, Dynamics of chiral (selfdual) P forms, Phys. Lett. B 206 (1988) 650 [SPIRES].ADSGoogle Scholar
  11. [11]
    C. Hillmann, E 7(7) invariant Lagrangian of D = 4 N = 8 supergravity, JHEP 04 (2010) 010 [arXiv:0911.5225] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  12. [12]
    J.H. Schwarz and A. Sen, Duality symmetric actions, Nucl. Phys. B 411 (1994) 35 [hep-th/9304154] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  13. [13]
    M.K. Gaillard and B. Zumino, Duality rotations for interacting fields, Nucl. Phys. B 193 (1981) 221 [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  14. [14]
    O. Piguet and S.P. Sorella, Algebraic renormalization: perturbative renormalization, symmetries and anomalies, Lect. Notes Phys. M28 (1995) 1 [SPIRES].MathSciNetGoogle Scholar
  15. [15]
    P. di Vecchia, S. Ferrara and L. Girardello, Anomalies of hidden local chiral symmetries in σ-modelS and extended supergravities, Phys. Lett. B 151 (1985) 199 [SPIRES].ADSGoogle Scholar
  16. [16]
    B. de Wit and M.T. Grisaru, Compensating fields and anomalies, in Essays in Honor of 60th birthday of E.S. Fradkin, Quantum field theory and quantum statistics, 2 (1985) 411 [SPIRES].
  17. [17]
    N. Marcus, Composite anomalies in supegravity, Phys. Lett. B 157 (1985) 383 [SPIRES].ADSGoogle Scholar
  18. [18]
    S. Weinberg, The quantum theory of fields. Vol. 1: Foundations, Cambridge University Press, Cambridge U.K. (1995) [SPIRES].Google Scholar
  19. [19]
    S. Weinberg, The quantum theory of fields. Vol. 2: Modern applications, Cambridge University Press, Cambridge U.K. (1996) [SPIRES].Google Scholar
  20. [20]
    M.B. Green, J.G. Russo and P. Vanhove, String theory dualities and supergravity divergences, JHEP 06 (2010) 075 [arXiv:1002.3805] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  21. [21]
    J.M. Drummond, P.J. Heslop, P.S. Howe and S.F. Kerstan, Integral invariants in N = 4 SYM and the effective action for coincident D-branes, JHEP 08 (2003) 016 [hep-th/0305202] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  22. [22]
    J. Broedel and L.J. Dixon, R 4 counterterm and E 7(7) symmetry in maximal supergravity, JHEP 05 (2010) 003 [arXiv:0911.5704] [SPIRES].CrossRefADSGoogle Scholar
  23. [23]
    H. Elvang and M. Kiermaier, Stringy KLT relations, global symmetries and E 7(7) violation, JHEP 10 (2010) 108 [arXiv:1007.4813] [SPIRES].CrossRefADSGoogle Scholar
  24. [24]
    M.B. Green, H. Ooguri and J.H. Schwarz, Decoupling supergravity from the superstring, Phys. Rev. Lett. 99 (2007) 041601 [arXiv:0704.0777] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  25. [25]
    L. Alvarez-Gaumé and É. Witten, Gravitational anomalies, Nucl. Phys. B 234 (1984) 269 [SPIRES].CrossRefADSGoogle Scholar
  26. [26]
    O. Alvarez, I.M. Singer and B. Zumino, Gravitational anomalies and the family’s index theorem, Commun. Math. Phys. 96 (1984) 409 [SPIRES].CrossRefzbMATHADSMathSciNetGoogle Scholar
  27. [27]
    E.S. Fradkin and G.A. Vilkovisky, Quantization of relativistic systems with constraints: equivalence of canonical and covariant formalisms in quantum theory of gravitational field, CERN-TH-2332 (1977) [SPIRES].
  28. [28]
    U. Lindström, N.K. Nielsen, M. Roςcek and P. van Nieuwenhuizen, The supersymmetric regularized path-integral measure in x space, Phys. Rev. D 37 (1988) 3588 [SPIRES].ADSGoogle Scholar
  29. [29]
    R. Kallosh and M. Soroush, Explicit action of E 7(7) on N = 8 supergravity fields, Nucl. Phys. B 801 (2008) 25 [arXiv:0802.4106] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  30. [30]
    G.W. Gibbons and S.W. Hawking, Classification of gravitational instanton symmetries, Commun. Math. Phys. 66 (1979) 291 [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  31. [31]
    M.B. Green and M. Gutperle, Effects of D-instantons, Nucl. Phys. B 498 (1997) 195 [hep-th/9701093] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  32. [32]
    P. Ramond, Field theory: A modern primer, Front. Phys. 51 (1981) 1 [SPIRES].MathSciNetGoogle Scholar
  33. [33]
    R.A. Bertlmann, Anomalies in quantum field theory, Clarendon, Oxford U.K. (1996) [SPIRES].Google Scholar
  34. [34]
    M.F. Atiyah and R. Bott, The moment map and equivariant cohomology, Topology 23 (1984) 1 [SPIRES].CrossRefzbMATHMathSciNetGoogle Scholar
  35. [35]
    G. Barnich, F. Brandt and M. Henneaux, Local BRST cohomology in the antifield formalism. 1. General theorems, Commun. Math. Phys. 174 (1995) 57 [hep-th/9405109] [SPIRES].CrossRefzbMATHADSMathSciNetGoogle Scholar
  36. [36]
    J.A. Dixon, Cohomology and renormalization of gauge theories. 2, (1979) HUTMP78/B64 [SPIRES].
  37. [37]
    L. Bonora and P. Cotta-Ramusino, Some remarks on BRS transformations, anomalies and the cohomology of the Lie algebra of the group of gauge transformations, Commun. Math. Phys. 87 (1983) 589 [SPIRES].CrossRefzbMATHADSMathSciNetGoogle Scholar
  38. [38]
    L. Baulieu, Perturbative gauge theories, Phys. Rept. 129 (1985) 1 [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  39. [39]
    J. Manes, R. Stora and B. Zumino, Algebraic study of chiral anomalies, Commun. Math. Phys. 102 (1985) 157 [SPIRES].CrossRefzbMATHADSMathSciNetGoogle Scholar
  40. [40]
    M. Henneaux and C. Teitelboim, Quantization of gauge systems, Princeton University Press, Princeton U.S.A. (1992) [SPIRES]zbMATHGoogle Scholar
  41. [41]
    B. de Wit and J.W. van Holten, Covariant quantization of gauge theories with open gauge algebra, Phys. Lett. B 79 (1978) 389 [SPIRES].ADSGoogle Scholar
  42. [42]
    I.A. Batalin and G.A. Vilkovisky, Quantization of gauge theories with linearly dependent generators, Phys. Rev. D 28 (1983) 2567 [Erratum ibid. D 30 (1984) 508] [SPIRES].ADSMathSciNetGoogle Scholar
  43. [43]
    K.S. Stelle and P.C. West, Matter coupling and BRS transformations with auxiliary fields in supergravity, Nucl. Phys. B 140 (1978) 285 [SPIRES].CrossRefADSGoogle Scholar
  44. [44]
    L. Baulieu and M.P. Bellon, A simple algebraic construction of the symmetries of supergravity, Phys. Lett. B 161 (1985) 96 [SPIRES].zbMATHADSMathSciNetGoogle Scholar
  45. [45]
    L. Baulieu, G. Bossard and S.P. Sorella, Shadow fields and local supersymmetric gauges, Nucl. Phys. B 753 (2006) 273 [hep-th/0603248] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  46. [46]
    D. Zwanziger, Renormalization in the Coulomb gauge and order parameter for confinement in QCD, Nucl. Phys. B 518 (1998) 237 [SPIRES].CrossRefADSGoogle Scholar
  47. [47]
    A. Andrasi and J.C. Taylor, Cancellation of energy-divergences in Coulomb gauge QCD, Eur. Phys. J. C 41 (2005) 377 [hep-th/0503099] [SPIRES].CrossRefADSGoogle Scholar
  48. [48]
    N. Arkani-Hamed, F. Cachazo and J. Kaplan, What is the simplest quantum field theory?, JHEP 09 (2010) 016 [arXiv:0808.1446] [SPIRES].CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2010

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Guillaume Bossard
    • 1
    Email author
  • Christian Hillmann
    • 2
  • Hermann Nicolai
    • 1
  1. 1.A EI, Max-Planck-Institut für GravitationsphysikPotsdamGermany
  2. 2.Institut des Hautes Etudes ScientifiquesBures-sur-YvetteFrance

Personalised recommendations