Journal of High Energy Physics

, 2010:43 | Cite as

Smeared versus localised sources in flux compactifications

  • Johan Blåbäck
  • Ulf H. Danielsson
  • Daniel Junghans
  • Thomas Van Riet
  • Timm WraseEmail author
  • Marco Zagermann


We investigate whether vacuum solutions in flux compactifications that are obtained with smeared sources (orientifolds or D-branes) still survive when the sources are localised. This seems to rely on whether the solutions are BPS or not. First we consider two sets of BPS solutions that both relate to the GKP solution through T-dualities: (p + 1)-dimensional solutions from spacetime-filling Op-planes with a conformally Ricci-flat internal space, and p-dimensional solutions with Op-planes that wrap a 1-cycle inside an everywhere negatively curved twisted torus. The relation between the solution with smeared orientifolds and the localised version is worked out in detail. We then demonstrate that a class of non-BPS AdS4 solutions that exist for IASD fluxes and with smeared D3branes (or analogously for ISD fluxes with anti-D3-branes) does not survive the localisation of the (anti) D3-branes. This casts doubts on the stringy consistency of non-BPS solutions that are obtained in the limit of smeared sources.


Flux compactifications Superstring Vacua D-branes 


  1. [1]
    S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097] [SPIRES].ADSMathSciNetGoogle Scholar
  2. [2]
    M.B. Schulz, Superstring orientifolds with torsion: O5 orientifolds of torus fibrations and their massless spectra, Fortsch. Phys. 52 (2004) 963 [hep-th/0406001] [SPIRES].CrossRefzbMATHADSMathSciNetGoogle Scholar
  3. [3]
    M. Graña, R. Minasian, M. Petrini and A. Tomasiello, A scan for new N = 1 vacua on twisted tori, JHEP 05 (2007) 031 [hep-th/0609124] [SPIRES].CrossRefADSGoogle Scholar
  4. [4]
    C. Angelantonj, S. Ferrara and M. Trigiante, New D = 4 gauged supergravities from N = 4 orientifolds with fluxes, JHEP 10 (2003) 015 [hep-th/0306185] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  5. [5]
    J.-P. Derendinger, C. Kounnas, P.M. Petropoulos and F. Zwirner, Superpotentials in IIA compactifications with general fluxes, Nucl. Phys. B 715 (2005) 211 [hep-th/0411276] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  6. [6]
    L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [SPIRES].CrossRefzbMATHADSMathSciNetGoogle Scholar
  7. [7]
    O. DeWolfe and S.B. Giddings, Scales and hierarchies in warped compactifications and brane worlds, Phys. Rev. D 67 (2003) 066008 [hep-th/0208123] [SPIRES].ADSMathSciNetGoogle Scholar
  8. [8]
    S.B. Giddings and A. Maharana, Dynamics of warped compactifications and the shape of the warped landscape, Phys. Rev. D 73 (2006) 126003 [hep-th/0507158] [SPIRES].ADSMathSciNetGoogle Scholar
  9. [9]
    L. Martucci, D-branes on general N = 1 backgrounds: superpotentials and D-terms, JHEP 06 (2006) 033 [hep-th/0602129] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  10. [10]
    A.R. Frey and A. Maharana, Warped spectroscopy: localization of frozen bulk modes, JHEP 08 (2006) 021 [hep-th/0603233] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  11. [11]
    P. Koerber and L. Martucci, From ten to four and back again: how to generalize the geometry, JHEP 08 (2007) 059 [arXiv:0707.1038] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  12. [12]
    M.R. Douglas and G. Torroba, Kinetic terms in warped compactifications, JHEP 05 (2009) 013 [arXiv:0805.3700] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  13. [13]
    G. Shiu, G. Torroba, B. Underwood and M.R. Douglas, Dynamics of warped flux compactifications, JHEP 06 (2008) 024 [arXiv:0803.3068] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  14. [14]
    A.R. Frey, G. Torroba, B. Underwood and M.R. Douglas, The universal Kähler modulus in warped compactifications, JHEP 01 (2009) 036 [arXiv:0810.5768] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  15. [15]
    F. Marchesano, P. McGuirk and G. Shiu, Open string wavefunctions in warped compactifications, JHEP 04 (2009) 095 [arXiv:0812.2247] [SPIRES].CrossRefADSGoogle Scholar
  16. [16]
    L. Martucci, On moduli and effective theory of N = 1 warped flux compactifications, JHEP 05 (2009) 027 [arXiv:0902.4031] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  17. [17]
    H.-Y. Chen, Y. Nakayama and G. Shiu, On D3-brane dynamics at strong warping, Int. J. Mod. Phys. A 25 (2010) 2493 [arXiv:0905.4463] [SPIRES].ADSMathSciNetGoogle Scholar
  18. [18]
    M.R. Douglas, Effective potential and warp factor dynamics, JHEP 03 (2010) 071 [arXiv:0911.3378] [SPIRES].CrossRefADSGoogle Scholar
  19. [19]
    S. Kachru, M.B. Schulz, P.K. Tripathy and S.P. Trivedi, New supersymmetric string compactifications, JHEP 03 (2003) 061 [hep-th/0211182] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  20. [20]
    S. Gurrieri, J. Louis, A. Micu and D. Waldram, Mirror symmetry in generalized Calabi-Yau compactifications, Nucl. Phys. B 654 (2003) 61 [hep-th/0211102] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  21. [21]
    D. Lüst, F. Marchesano, L. Martucci and D. Tsimpis, Generalized non-supersymmetric flux vacua, JHEP 11 (2008) 021 [arXiv:0807.4540] [SPIRES].CrossRefGoogle Scholar
  22. [22]
    T. Banks, TASI lectures on holographic space-time, SUSY and gravitational effective field theory, arXiv:1007.4001 [SPIRES].
  23. [23]
    S.M. Carroll, M.C. Johnson and L. Randall, Dynamical compactification from de Sitter space, JHEP 11 (2009) 094 [arXiv:0904.3115] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  24. [24]
    M.R. Douglas and R. Kallosh, Compactification on negatively curved manifolds, JHEP 06 (2010) 004 [arXiv:1001.4008] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  25. [25]
    P. Koerber, Lectures on generalized complex geometry for physicists, arXiv:1006.1536 [SPIRES].
  26. [26]
    U.H. Danielsson, S.S. Haque, G. Shiu and T. Van Riet, Towards classical de Sitter solutions in string theory, JHEP 09 (2009) 114 [arXiv:0907.2041] [SPIRES].CrossRefADSGoogle Scholar
  27. [27]
    B. Janssen, P. Meessen and T. Ortín, The D8-brane tied up: String and brane solutions in massive type IIA supergravity, Phys. Lett. B 453 (1999) 229 [hep-th/9901078] [SPIRES].ADSGoogle Scholar
  28. [28]
    T.H. Buscher, A symmetry of the string background field equations, Phys. Lett. B 194 (1987) 59 [SPIRES].ADSMathSciNetGoogle Scholar
  29. [29]
    S.F. Hassan, SO(d,d) transformations of Ramond-Ramond fields and space-time spinors, Nucl. Phys. B 583 (2000) 431 [hep-th/9912236] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  30. [30]
    J. Shelton, W. Taylor and B. Wecht, Nongeometric flux compactifications, JHEP 10 (2005) 085 [hep-th/0508133] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  31. [31]
    M.R. Douglas and S. Kachru, Flux compactification, Rev. Mod. Phys. 79 (2007) 733 [hep-th/0610102] [SPIRES].CrossRefzbMATHADSMathSciNetGoogle Scholar
  32. [32]
    E. Silverstein, TASI/PiTP/ISS lectures on moduli and microphysics, hep-th/0405068 [SPIRES].
  33. [33]
    D. Baumann, A. Dymarsky, S. Kachru, I.R. Klebanov and L. McAllister, D3-brane potentials from fluxes in AdS/CFT, JHEP 06 (2010) 072 [arXiv:1001.5028] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  34. [34]
    J. Blaback, U. Danielsson, D. Junghans, T. Van Riet, T. Wrase and M. Zagermann. work in progress.Google Scholar
  35. [35]
    O. DeWolfe, A. Giryavets, S. Kachru and W. Taylor, Type IIA moduli stabilization, JHEP 07 (2005) 066 [hep-th/0505160] [SPIRES].ADSMathSciNetGoogle Scholar
  36. [36]
    I. Bena, M. Graña and N. Halmagyi, On the existence of meta-stable vacua in Klebanov-Strassler, JHEP 09 (2010) 087 [arXiv:0912.3519] [SPIRES].CrossRefADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  • Johan Blåbäck
    • 1
  • Ulf H. Danielsson
    • 1
  • Daniel Junghans
    • 2
  • Thomas Van Riet
    • 1
  • Timm Wrase
    • 2
    • 3
    Email author
  • Marco Zagermann
    • 2
    • 4
  1. 1.Institutionen för fysik och astronomiUppsala UniversitetUppsalaSweden
  2. 2.Institut für Theoretische Physik &, Center for Quantum Engineering and Spacetime ResearchLeibniz Universität HannoverHannoverGermany
  3. 3.Department of PhysicsCornell UniversityIthacaU.S.A.
  4. 4.Kavli Institute for Theoretical PhysicsSanta BarbaraU.S.A.

Personalised recommendations