Journal of High Energy Physics

, 2010:21 | Cite as

Anomaly and a QCD-like phase diagram with massive bosonic baryons

  • Shailesh Chandrasekharan
  • Anyi LiEmail author


We study a strongly coupled Z 2 lattice gauge theory with two flavors of quarks, invariant under an exact SU(2) × SU(2) × U A (1) × U B (1) symmetry which is the same as in QCD with two flavors of quarks without an anomaly. The model also contains a coupling that can be used to break the U A (1) symmetry and thus mimic the QCD anomaly. At low temperatures T and small baryon chemical potential μ B the model contains massless pions and massive bosonic baryons similar to QCD with an even number of colors. In this work we study the Tμ B phase diagram of the model and show that it contains three phases: (1) A chirally broken phase at low T and μ B , (2) a chirally symmetric baryon superfluid phase at low T and high μ B , and (3) a symmetric phase at high T. We find that the nature of the finite temperature chiral phase transition and in particular the location of the tricritical point that seperates the first order line from the second order line is affected significantly by the anomaly.


Lattice QCD Strong Coupling Expansion Lattice Quantum Field Theory QCD 


  1. [1]
    M.G. Alford, A. Schmitt, K. Rajagopal and T. Schafer, Color superconductivity in dense quark matter, Rev. Mod. Phys. 80 (2008) 1455 [arXiv:0709.4635] [SPIRES].CrossRefADSGoogle Scholar
  2. [2]
    P. Braun-Munzinger and J. Stachel, The quest for the quark-gluon plasma, Nature 448 (2007) 302 [SPIRES].CrossRefADSGoogle Scholar
  3. [3]
    STAR collaboration, M.M. Aggarwal et al., An experimental exploration of the QCD phase diagram: the search for the critical point and the onset of de-confinement, arXiv:1007.2613 [SPIRES].
  4. [4]
    A.M. Halasz, A.D. Jackson, R.E. Shrock, M.A. Stephanov and J.J.M. Verbaarschot, On the phase diagram of QCD, Phys. Rev. D 58 (1998) 096007 [hep-ph/9804290] [SPIRES].ADSGoogle Scholar
  5. [5]
    J. Berges and K. Rajagopal, Color superconductivity and chiral symmetry restoration at nonzero baryon density and temperature, Nucl. Phys. B 538 (1999) 215 [hep-ph/9804233] [SPIRES].CrossRefADSGoogle Scholar
  6. [6]
    A. Bazavov et al., Equation of state and QCD transition at finite temperature, Phys. Rev. D 80 (2009) 014504 [arXiv:0903.4379] [SPIRES].ADSGoogle Scholar
  7. [7]
    Y. Aoki, G. Endrodi, Z. Fodor, S.D. Katz and K.K. Szabo, The order of the quantum chromodynamics transition predicted by the standard model of particle physics, Nature 443 (2006) 675 [hep-lat/0611014] [SPIRES].CrossRefADSGoogle Scholar
  8. [8]
    Y. Aoki, Z. Fodor, S.D. Katz and K.K. Szabo, The QCD transition temperature: Results with physical masses in the continuum limit, Phys. Lett. B 643 (2006) 46 [hep-lat/0609068] [SPIRES].ADSGoogle Scholar
  9. [9]
    Y. Aoki et al., The QCD transition temperature: results with physical masses in the continuum limit II, JHEP 06 (2009) 088 [arXiv:0903.4155] [SPIRES].CrossRefADSGoogle Scholar
  10. [10]
    Wuppertal-Budapest collaboration, S. Borsányi et al., Is there still any Tc mystery in lattice QCD? Results with physical masses in the continuum limit III, JHEP 09 (2010) 073 [arXiv:1005.3508] [SPIRES].CrossRefADSGoogle Scholar
  11. [11]
    O. P hilipsen, Status of lattice studies of the QCD phase diagram, Prog. Theor. Phys. Suppl. 174 (2008) 206 [arXiv:0808.0672] [SPIRES].CrossRefADSGoogle Scholar
  12. [12]
    P. de Forcrand, Simulating QCD at finite density, PoS(LAT2009)010 [arXiv:1005.0539] [SPIRES].
  13. [13]
    M.P. Lombardo, K. Splittorff and J.J.M. Verbaarschot, Lattice QCD and dense quark matter, arXiv:0912.4410 [SPIRES].
  14. [14]
    R.V. Gavai and S. Gupta, QCD at finite chemical potential with six time slices, Phys. Rev. D 78 (2008) 114503 [arXiv:0806.2233] [SPIRES].ADSGoogle Scholar
  15. [15]
    M.A. Stephanov, QCD phase diagram and the critical point, Prog. Theor. Phys. Suppl. 153 (2004) 139 [hep-ph/0402115] [SPIRES].CrossRefADSGoogle Scholar
  16. [16]
    M. Alford, J.A. Bowers and K. Rajagopal, Crystalline color superconductivity, Phys. Rev. D 63 (2001) 074016 [SPIRES].ADSGoogle Scholar
  17. [17]
    L. McLerran and R.D. Pisarski, Phases of cold, dense quarks at large-N c, Nucl. Phys. A 796 (2007) 83 [arXiv:0706.2191] [SPIRES].ADSGoogle Scholar
  18. [18]
    A.D. Jackson and J.J.M. Verbaarschot, A random matrix model for chiral symmetry breaking, Phys. Rev. D 53 (1996) 7223 [hep-ph/9509324] [SPIRES].ADSGoogle Scholar
  19. [19]
    T. Sano, H. Fujii and M. Ohtani, UA(1) breaking and phase transition in chiral random matrix model, Phys. Rev. D 80 (2009) 034007 [arXiv:0904.1860] [SPIRES].ADSGoogle Scholar
  20. [20]
    M.A. Stephanov, QCD critical point and complex chemical potential singularities, Phys. Rev. D 73 (2006) 094508 [hep-lat/0603014] [SPIRES].ADSGoogle Scholar
  21. [21]
    S. Hands and D.N. Walters, Evidence for BCS diquark condensation in the 3 + 1D lattice NJLS model, Phys. Lett. B 548 (2002) 196 [hep-lat/0209140] [SPIRES].ADSGoogle Scholar
  22. [22]
    M. Buballa, NJLS model analysis of quark matter at large density, Phys. Rept. 407 (2005) 205 [hep-ph/0402234] [SPIRES].CrossRefADSGoogle Scholar
  23. [23]
    G.-f. Sun, L. He and P. Zhuang, BEC-BCS crossover in the Nambu–Jona-Lasinio model of QCD, Phys. Rev. D 75 (2007) 096004 [hep-ph/0703159] [SPIRES].ADSGoogle Scholar
  24. [24]
    K. Fukushima, Phase diagrams in the three-flavor Nambu–Jona-Lasinio model with the Polyakov loop, Phys. Rev. D 77 (2008) 114028 [arXiv:0803.3318] [SPIRES].ADSGoogle Scholar
  25. [25]
    C. Ratti, M.A. Thaler and W. Weise, Phases of QCD: lattice thermodynamics and a field theoretical model, Phys. Rev. D 73 (2006) 014019 [hep-ph/0506234] [SPIRES].ADSGoogle Scholar
  26. [26]
    B.-J. Schaefer, J.M. Pawlowski and J. Wambach, The phase structure of the Polyakov-quark-meson model, Phys. Rev. D 76 (2007) 074023 [arXiv:0704.3234] [SPIRES].ADSGoogle Scholar
  27. [27]
    H. Mao, J. Jin and M. Huang, Phase diagram and thermodynamics of the Polyakov linear σ-model with three quark flavors, J. Phys. G 37 (2010) 035001 [arXiv:0906.1324] [SPIRES].ADSGoogle Scholar
  28. [28]
    M. Cristoforetti, T. Hell and W. Weise, Monte-Carlo simulations of QCD thermodynamics in the PNJL model, J. Phys. Conf. Ser. 168 (2009) 012021 [arXiv:0901.4673] [SPIRES].CrossRefADSGoogle Scholar
  29. [29]
    B.-J. Schaefer and M. Wagner, The three-flavor chiral phase structure in hot and dense QCD matter, Phys. Rev. D 79 (2009) 014018 [arXiv:0808.1491] [SPIRES].ADSGoogle Scholar
  30. [30]
    E.S. Bowman and J.I. Kapusta, Critical points in the linear σ-model with quarks, Phys. Rev. C 79 (2009) 015202 [arXiv:0810.0042] [SPIRES].ADSGoogle Scholar
  31. [31]
    Y. Nishida, K. Fukushima and T. Hatsuda, Thermodynamics of strong coupling 2-color QCD with chiral and diquark condensates, Phys. Rept. 398 (2004) 281 [hep-ph/0306066] [SPIRES].CrossRefADSGoogle Scholar
  32. [32]
    N. Kawamoto, K. Miura, A. Ohnishi and T. Ohnuma, Phase diagram at finite temperature and quark density in the strong coupling limit of lattice QCD for color SU(3), Phys. Rev. D 75 (2007) 014502 [hep-lat/0512023] [SPIRES].ADSGoogle Scholar
  33. [33]
    J.B. Kogut, M.A. Stephanov and D. Toublan, On two-color QCD with baryon chemical potential, Phys. Lett. B 464 (1999) 183 [hep-ph/9906346] [SPIRES].ADSGoogle Scholar
  34. [34]
    J.B. Kogut, D. Toublan and D.K. Sinclair, Diquark condensation at nonzero chemical potential and temperature, Phys. Lett. B 514 (2001) 77 [hep-lat/0104010] [SPIRES].ADSGoogle Scholar
  35. [35]
    J.B. Kogut, D.K. Sinclair, S.J. Hands and S.E. Morrison, Two-colour QCD at non-zero quark-number density, Phys. Rev. D 64 (2001) 094505 [hep-lat/0105026] [SPIRES].ADSGoogle Scholar
  36. [36]
    J.B. Kogut, D. Toublan and D.K. Sinclair, The phase diagram of four flavor SU(2) lattice gauge theory at nonzero chemical potential and temperature, Nucl. Phys. B 642 (2002) 181 [hep-lat/0205019] [SPIRES].CrossRefADSGoogle Scholar
  37. [37]
    S. Chandrasekharan and F.-J. Jiang, Phase-diagram of two-color lattice QCD in the chiral limit, Phys. Rev. D 74 (2006) 014506 [hep-lat/0602031] [SPIRES].ADSGoogle Scholar
  38. [38]
    J.O. Andersen and T. Brauner, Phase diagram of two-color quark matter at nonzero baryon and isospin density, Phys. Rev. D 81 (2010) 096004 [arXiv:1001.5168] [SPIRES].ADSGoogle Scholar
  39. [39]
    J.B. Kogut, M.A. Stephanov, D. Toublan, J.J.M. Verbaarschot and A. Zhitnitsky, QCD-like theories at finite baryon density, Nucl. Phys. B 582 (2000) 477 [hep-ph/0001171] [SPIRES].CrossRefADSGoogle Scholar
  40. [40]
    T. Brauner, K. Fukushima and Y. Hidaka, Two-color quark matter: U(1)A restoration, superfluidity and quarkyonic phase, Phys. Rev. D 80 (2009) 074035 [arXiv:0907.4905] [SPIRES].ADSGoogle Scholar
  41. [41]
    J.-W. Chen, K. Fukushima, H. Kohyama, K. Ohnishi and U. Raha, UA(1) anomaly in hot and dense QCD and the critical surface, Phys. Rev. D 80 (2009) 054012 [arXiv:0901.2407] [SPIRES].ADSGoogle Scholar
  42. [42]
    T. Hatsuda, M. Tachibana, N. Yamamoto and G. Baym, New critical point induced by the axial anomaly in dense QCD, Phys. Rev. Lett. 97 (2006) 122001 [hep-ph/0605018] [SPIRES].CrossRefADSGoogle Scholar
  43. [43]
    N. Yamamoto, M. Tachibana, T. Hatsuda and G. Baym, Phase structure, collective modes and the axial anomaly in dense QCD, Phys. Rev. D 76 (2007) 074001 [arXiv:0704.2654] [SPIRES].ADSGoogle Scholar
  44. [44]
    P. de Forcrand and M. Fromm, Nuclear physics from lattice QCD at strong coupling, Phys. Rev. Lett. 104 (2010) 112005 [arXiv:0907.1915] [SPIRES].CrossRefADSGoogle Scholar
  45. [45]
    S. Chandrasekharan, A new computational approach to lattice quantum field theories, PoS(LATTICE2008)003 [arXiv:0810.2419] [SPIRES].
  46. [46]
    N. Prokof’ev and B. Svistunov, Worm algorithms for classical statistical models, Phys. Rev. Lett. 87 (2001) 160601 [SPIRES].CrossRefADSGoogle Scholar
  47. [47]
    O.F. Syljuasen and A.W. Sandvik, Quantum Monte Carlo with directed loops, Phys. Rev. E 66 (2002) 046701 [SPIRES].ADSGoogle Scholar
  48. [48]
    D.H. Adams and S. Chandrasekharan, Chiral limit of strongly coupled lattice gauge theories, Nucl. Phys. B 662 (2003) 220 [hep-lat/0303003] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  49. [49]
    U. Wolff, Strong coupling expansion Monte Carlo, arXiv:1009.0657 [SPIRES].
  50. [50]
    S. Chandrasekharan and A.C. Mehta, Effects of the anomaly on the two-flavor QCD chiral phase transition, Phys. Rev. Lett. 99 (2007) 142004 [arXiv:0705.0617] [SPIRES].CrossRefADSGoogle Scholar
  51. [51]
    D.J. Cecile and S. Chandrasekharan, Modeling pion physics in the ϵ-regime of two-flavor QCD using strong coupling lattice QED, Phys. Rev. D 77 (2008) 014506 [arXiv:0708.0558] [SPIRES].ADSGoogle Scholar
  52. [52]
    S. Chandrasekharan, The fermion bag approach to lattice field theories, Phys. Rev. D 82 (2010) 025007 [arXiv:0910.5736] [SPIRES].ADSGoogle Scholar
  53. [53]
    S. Chandrasekharan and A. Li, Fermion bag approach to the sign problem in strongly coupled lattice QED with Wilson fermions, arXiv:1008.5146 [SPIRES].
  54. [54]
    A. Pelissetto and E. Vicari, Critical phenomena and renormalization-group theory, Phys. Rept. 368 (2002) 549 [cond-mat/0012164] [SPIRES].CrossRefzbMATHADSMathSciNetGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Department of Physics, Box 90305Duke UniversityDurhamU.S.A.

Personalised recommendations