Skip to main content

Signatures of the genuine and matter-induced components of the CP violation asymmetry in neutrino oscillations

A preprint version of the article is available at arXiv.


CP asymmetries for neutrino oscillations in matter can be disentangled into the matter-induced CPT-odd (T-invariant) component and the genuine T-odd (CPT-invariant) component. For their understanding in terms of the relevant ingredients, we develop a new perturbative expansion in both Δm 221 , |a| ≪ |Δm 231 | without any assumptions between Δm 221 and a, and study the subtleties of the vacuum limit in the two terms of the CP asymmetry, moving from the CPT-invariant vacuum limit a → 0 to the T-invariant limit Δm 221  → 0. In the experimental region of terrestrial accelerator neutrinos, we calculate their approximate expressions from which we prove that, at medium baselines, the CPT-odd component is small and nearly δ-independent, so it can be subtracted from the experimental CP asymmetry as a theoretical background, provided the hierarchy is known. At long baselines, on the other hand, we find that (i) a Hierarchy-odd term in the CPT-odd component dominates the CP asymmetry for energies above the first oscillation node, and (ii) the CPT-odd term vanishes, independent of the CP phase δ, at E = 0.92 GeV (L/1300 km) near the second oscillation maximum, where the T-odd term is almost maximal and proportional to sin δ. A measurement of the CP asymmetry in these energy regions would thus provide separate information on (i) the neutrino mass ordering, and (ii) direct evidence of genuine CP violation in the lepton sector.


  1. [1]

    M. Fukugita and T. Yanagida, Baryogenesis Without Grand Unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].

  2. [2]

    Hyper-Kamiokande proto-collaboration, K. Abe et al., Hyper-Kamiokande design report, KEK-Preprint-2016-21, ICRR-Report-701-2016-1 (2016).

  3. [3]

    DUNE collaboration, R. Acciarri et al., Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE), arXiv:1512.06148 [INSPIRE].

  4. [4]

    L. Wolfenstein, Neutrino Oscillations in Matter, Phys. Rev. D 17 (1978) 2369 [INSPIRE].

  5. [5]

    S.P. Mikheyev and A. Yu. Smirnov, Resonance Amplification of Oscillations in Matter and Spectroscopy of Solar Neutrinos, Sov. J. Nucl. Phys. 42 (1985) 913 [INSPIRE].

    Google Scholar 

  6. [6]

    J. Bernabéu and A. Segarra, Disentangling genuine from matter-induced CP-violation in neutrino oscillations, arXiv:1806.07694 [INSPIRE].

  7. [7]

    V.D. Barger, K. Whisnant, S. Pakvasa and R.J.N. Phillips, Matter Effects on Three-Neutrino Oscillations, Phys. Rev. D 22 (1980) 2718 [INSPIRE].

  8. [8]

    T.-K. Kuo and J.T. Pantaleone, Neutrino Oscillations in Matter, Rev. Mod. Phys. 61 (1989) 937 [INSPIRE].

    ADS  Article  Google Scholar 

  9. [9]

    H.W. Zaglauer and K.H. Schwarzer, The mixing angles in matter for three generations of neutrinos and the MSW mechanism, Z. Phys. C 40 (1988) 273.

  10. [10]

    P.I. Krastev, Searching for the MSW effect with neutrino beams from next generation accelerators, Nuovo Cim. A 103 (1990) 361 [INSPIRE].

  11. [11]

    R.H. Bernstein and S.J. Parke, Terrestrial long baseline neutrino oscillation experiments, Phys. Rev. D 44 (1991) 2069 [INSPIRE].

  12. [12]

    S.T. Petcov and Y.-L. Zhou, On Neutrino Mixing in Matter and CP and T Violation Effects in Neutrino Oscillations, Phys. Lett. B 785 (2018) 95 [arXiv:1806.09112] [INSPIRE].

  13. [13]

    T. Ohlsson and S. Zhou, Extrinsic and Intrinsic CPT Asymmetries in Neutrino Oscillations, Nucl. Phys. B 893 (2015) 482 [arXiv:1408.4722] [INSPIRE].

  14. [14]

    Z.-z. Xing, New formulation of matter effects on neutrino mixing and CP-violation, Phys. Lett. B 487 (2000) 327 [hep-ph/0002246] [INSPIRE].

  15. [15]

    A. Cervera et al., Golden measurements at a neutrino factory, Nucl. Phys. B 579 (2000) 17 [Erratum ibid. B 593 (2001) 731] [hep-ph/0002108] [INSPIRE].

  16. [16]

    P.B. Denton, H. Minakata and S.J. Parke, Compact Perturbative Expressions For Neutrino Oscillations in Matter, JHEP 06 (2016) 051 [arXiv:1604.08167] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  17. [17]

    A. Ioannisian and S. Pokorski, Three Neutrino Oscillations in Matter, Phys. Lett. B 782 (2018) 641 [arXiv:1801.10488] [INSPIRE].

  18. [18]

    Z.-z. Xing and J.-y. Zhu, Analytical approximations for matter effects on CP-violation in the accelerator-based neutrino oscillations with E ≲ 1 GeV, JHEP 07 (2016) 011 [arXiv:1603.02002] [INSPIRE].

  19. [19]

    P.F. de Salas, D.V. Forero, C.A. Ternes, M. Tortola and J.W.F. Valle, Status of neutrino oscillations 2018: 3σ hint for normal mass ordering and improved CP sensitivity, Phys. Lett. B 782 (2018) 633 [arXiv:1708.01186] [INSPIRE].

  20. [20]

    M.C. Banuls, G. Barenboim and J. Bernabeu, Medium effects for terrestrial and atmospheric neutrino oscillations, Phys. Lett. B 513 (2001) 391 [hep-ph/0102184] [INSPIRE].

  21. [21]

    I. Mocioiu and R. Shrock, Matter effects on neutrino oscillations in long baseline experiments, Phys. Rev. D 62 (2000) 053017 [hep-ph/0002149] [INSPIRE].

  22. [22]

    J. Bernabeu, G.C. Branco and M. Gronau, CP Restrictions on Quark Mass Matrices, Phys. Lett. 169B (1986) 243 [INSPIRE].

    ADS  Article  Google Scholar 

  23. [23]

    P.F. Harrison and W.G. Scott, CP and T violation in neutrino oscillations and invariance of Jarlskog’s determinant to matter effects, Phys. Lett. B 476 (2000) 349 [hep-ph/9912435] [INSPIRE].

  24. [24]

    C. Jarlskog, A basis independent formulation of the connection between quark mass matrices, CP violation and experiment, Z. Phys. C 29 (1985) 491.

  25. [25]

    S.-F. Ge, K. Hagiwara and C. Rott, A Novel Approach to Study Atmospheric Neutrino Oscillation, JHEP 06 (2014) 150 [arXiv:1309.3176] [INSPIRE].

    ADS  Article  Google Scholar 

  26. [26]

    K. Kimura, A. Takamura and H. Yokomakura, Exact formula of probability and CP-violation for neutrino oscillations in matter, Phys. Lett. B 537 (2002) 86 [hep-ph/0203099] [INSPIRE].

  27. [27]

    P.F. Harrison, W.G. Scott and T.J. Weiler,ss Exact matter covariant formulation of neutrino oscillation probabilities, Phys. Lett. B 565 (2003) 159 [hep-ph/0305175] [INSPIRE].

  28. [28]

    V. De Romeri, E. Fernandez-Martinez and M. Sorel, Neutrino oscillations at DUNE with improved energy reconstruction, JHEP 09 (2016) 030 [arXiv:1607.00293] [INSPIRE].

    Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information



Corresponding author

Correspondence to Alejandro Segarra.

Additional information

ArXiv ePrint: 1807.11879

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bernabéu, J., Segarra, A. Signatures of the genuine and matter-induced components of the CP violation asymmetry in neutrino oscillations. J. High Energ. Phys. 2018, 63 (2018).

Download citation


  • CP violation
  • Discrete Symmetries
  • Neutrino Physics