Journal of High Energy Physics

, 2012:32 | Cite as

Potential theory, path integrals and the Laplacian of the indicator

Article

Abstract

This paper links the field of potential theory — i.e. the Dirichlet and Neumann problems for the heat and Laplace equation — to that of the Feynman path integral, by postulating the following seemingly ill-defined potential:
$$ V(x):=\mp \frac{{{\sigma^2}}}{2}\nabla_x^2{1_{{x\in D}}} $$
where the volatility is the reciprocal of the mass (i.e. m = 1/σ2) and ħ = 1. The Laplacian of the indicator can be interpreted using the theory of distributions: it is the d-dimensional analogue of the Dirac δ′-function, which can formally be defined as \( \partial_x^2{1_{x>0 }} \).
We show, first, that the path integral's perturbation series (or Born series) matches the classical single and double boundary layer series of potential theory, thereby connecting two hitherto unrelated fields. Second, we show that the perturbation series is valid for all domains D that allow Green's theorem (i.e. with a finite number of corners, edges and cusps), thereby expanding the classical applicability of boundary layers. Third, we show that the minus (plus) in the potential holds for the Dirichlet (Neumann) boundary condition; showing for the first time a particularly close connection between these two classical problems. Fourth, we demonstrate that the perturbation series of the path integral converges as follows:

mode of convergence

absorbed propagator

reflected propagator

convex domain

alternating

monotone

concave domain

monotone

alternating

We also discuss the third boundary problem (which poses Robin boundary conditions) and discuss an extension to moving domains.

Keywords

Stochastic Processes Integrable Equations in Physics Boundary Quantum Field Theory Exact S-Matrix 

References

  1. [1]
    G. Green, An Essay on the Application of mathematical Analysis to the theories of Electricity and Magnetism, printed for the author by T. Wheelhouse (1828) arXiv:0807.0088.
  2. [2]
    R. Feynman, Space-time approach to nonrelativistic quantum mechanics, Rev. Mod. Phys. 20 (1948) 367 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    P. Dirac, The principles of quantum mechanics, Oxford University Press, Oxford, U.K. (1930).MATHGoogle Scholar
  4. [4]
    S. Zaremba, Sur le principe de dirichlet, Acta Mathematica 34 (1911) 293 [http://www.springerlink.com/index/P672848654673112.pdf].Google Scholar
  5. [5]
    H. Lebesgue, Sur des cas dimpossibilité du probleme de dirichlet, Comptes Rendus de la Société Mathématique de France 41 (1913) 17.Google Scholar
  6. [6]
    S. Port and C. Stone, Brownian Motion and Classical Potential Theory, Academic Press, New York, U.S.A. (1978).MATHGoogle Scholar
  7. [7]
    S. Kakutani, Two-dimensional brownian motion and harmonic functions, P. Jpn. Acad. A 20 (1944)706.MathSciNetCrossRefGoogle Scholar
  8. [8]
    K. Chung, Green, Brown, and probability, World Scientific Publishing Company (1995).Google Scholar
  9. [9]
    G. Brosamler, A probabilistic solution of the neumann problem, Math. Scand. 38 (1976) 137.MathSciNetMATHGoogle Scholar
  10. [10]
    R. Balian and C. Bloch, Solution of the Schrödinger Equation in Terms of Classical Paths, Annals Phys. 85 (1974) 514 [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  11. [11]
    R. Balian and B. Duplantier, Electromagnetic Waves Near Perfect Conductors. 1. Multiple Scattering Expansions. Distribution of Modes, Annals Phys. 104 (1977) 300 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    R. Balian and B. Duplantier, Electromagnetic Waves Near Perfect Conductors. 2. Casimir Effect, Annals Phys. 112 (1978) 165 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    T. Hansson and R. Jaffe, Cavity quantum chromodynamics, Phys. Rev. D 28 (1983) 882 [INSPIRE].ADSGoogle Scholar
  14. [14]
    T. Hansson and R. Jaffe, The multiple reflection expansion for confined scalar, Dirac and gauge fields, Annals Phys. 151 (1983) 204 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    M. Bordag and D. Vassilevich, Heat kernel expansion for semitransparent boundaries, J. Phys. A 32 (1999) 8247 [hep-th/9907076] [INSPIRE].MathSciNetADSGoogle Scholar
  16. [16]
    M. Bordag, D. Vassilevich, H. Falomir and E. Santangelo, Multiple reflection expansion and heat kernel coefficients, Phys. Rev. D 64 (2001) 045017 [hep-th/0103037] [INSPIRE].MathSciNetADSGoogle Scholar
  17. [17]
    M. Bordag, H. Falomir, E. Santangelo and D. Vassilevich, Boundary dynamics and multiple reflection expansion for Robin boundary conditions, Phys. Rev. D 65 (2002) 064032 [hep-th/0111073] [INSPIRE].MathSciNetADSGoogle Scholar
  18. [18]
    I. Pirozhenko, V. Nesterenko and M. Bordag, Integral equations for heat kernel in compound media, J. Math. Phys. 46 (2005) 042305.MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    M.F. Maghrebi, A diagrammatic expansion of the Casimir energy in multiple reflections: theory and applications, Phys. Rev. D 83 (2011) 045004 [arXiv:1012.1060] [INSPIRE].ADSGoogle Scholar
  20. [20]
    R. Balian and C. Bloch, Distribution of eigenfrequencies for the wave equation in a finite domain. 1. Three-dimensional problem with smooth boundary surface, Annals Phys. 60 (1970) 401 [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  21. [21]
    M. Kac, Can One Hear the Shape of a Drum?, The American Mathematical Monthly 73 (1966) 1 [http://dx.doi.org/10.2307/2313748].
  22. [22]
    K. Stewartson and R. Waechter, On hearing the shape of a drum: further results, Math. Proc. Cambridge 69 (1971) 353.ADSMATHCrossRefGoogle Scholar
  23. [23]
    M. Protter, Can one hear the shape of a drum? revisted, Siam Review 29 (1987) 185 [http://www.jstor.org/stable/10.2307/2031658].Google Scholar
  24. [24]
    O. Giraud and K. Thas, Hearing shapes of drums: Mathematical and physical aspects of isospectrality, Rev. Mod. Phys. 82 (2010) 2213 [arXiv:1101.1239].ADSCrossRefGoogle Scholar
  25. [25]
    M. Kac, On distributions of certain wiener functionals, Trans. Amer. Math. Soc 65 (1949) 1 [http://www.ams.org/journals/tran/1949-065-01/S0002-9947-1949-0027960-X/S0002-9947-1949-0027960-X.pdf].
  26. [26]
    M. Kac, On some connections between probability theory and differential and integral equations, in proceedings of Second Berkeley Symposium on Mathematical Statistics and Probability, Statistical Laboratory of the University of California, Berkeley, California, U.S.A., 31 July-12 August 1950, Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability 1 (1951) 189, J. Neyman ed., University of California Press, Berkeley, California, U.S.A. [http://projecteuclid.org/euclid.bsmsp/1200500229].
  27. [27]
    R. Feynman and A. Hibbs, Quantum Mechanics and Path Integrals, McGraw-Hill Companies (June 1965).Google Scholar
  28. [28]
    L. Ryder, Quantum Field Theory, 2 ed., Cambridge University Press, Cambridge, U.K. (June 1996).MATHGoogle Scholar
  29. [29]
    W. Janke and H. Kleinert, Summing paths for a particle in a box, Lettere Al Nuovo Cimento 25 (1979) 297.CrossRefGoogle Scholar
  30. [30]
    T. Clark, R. Menikoff and D. Sharp, Quantum mechanics on the half-line using path integrals, Phys. Rev. D 22 (1980) 3012 [INSPIRE].MathSciNetADSGoogle Scholar
  31. [31]
    S. Albeverio, F. Gesztesy, R. Høegh-Krohn and W. Kirsch, On point interactions in one dimension, J. Operat. Theor. 12 (1984) 101 [http://www.theta.ro/jot/archive/1984-012-001/1984-012-001-006.pdf].Google Scholar
  32. [32]
    S. Lawande and K. Bhagwat, Feynman propagator for the [delta]-function potential, Phys. Lett. A 131 (1988) 8.MathSciNetADSGoogle Scholar
  33. [33]
    S. Albeverio, Z. Brzezniak and L. Dabrowski, Time-dependent propagator with point interaction, J. Phys. A 27 (1994) 4933.MathSciNetADSGoogle Scholar
  34. [34]
    C. Grosche, Path integrals for potential problems with δ-function perturbation, J. Phys. A 23 (1990) 5205.MathSciNetADSGoogle Scholar
  35. [35]
    I. Karatzas and S. Shreve, Brownian Motion and Stochastic Calculus, Graduate Texts in Mathematics, 2nd ed., Springer (Aug. 1991).Google Scholar
  36. [36]
    S. Albeverio, F. Gesztesy, R. Hoegh-Krohn and H. Holden, Solvable models in quantum mechanics, Springer (1988), 2nd ed., American Mathematical Society Chelsea Publishing (2005).Google Scholar
  37. [37]
    B. Zhao, Comments on the schrödinger equation with delta-interaction in one dimension, J. Phys. A 25 (1992) L617.ADSGoogle Scholar
  38. [38]
    S. Albeverio, F. Gesztesy and H. Holden, Comments on a recent note on the schrodinger equation with a delta-interaction, J. Phys. A 26 (1993) 3903.MathSciNetADSGoogle Scholar
  39. [39]
    D. Griffiths, Boundary conditions at the derivative of a delta function, J. Phys. A 26 (1993) 2265.ADSGoogle Scholar
  40. [40]
    F. Coutinho, Y. Nogami, and J. Perez, Generalized point interactions in one-dimensional quantum mechanics, J. Phys. A 30 (1997) 3937.MathSciNetADSGoogle Scholar
  41. [41]
    M. Rajabpour, Area distribution of an elastic brownian motion, J. Phys. 42 (2009) 485205.MathSciNetGoogle Scholar
  42. [42]
    A. Auerbach, S. Kivelson and D. Nicole, Path Decomposition for Multidimensional Tunneling, Phys. Rev. Lett. 53 (1984) 411 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  43. [43]
    A. Auerbach and S. Kivelson, The path decomposition expansion and multidimensional tunneling, Nucl. Phys. B 257 (1985) 799 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    M. Goodman, Path integral solution to the infinite square well, Am. J. Phys. 49 (1981) 843 [http://link.aip.org/link/?AJPIAS/49/843/1].
  45. [45]
    J. Halliwell, An operator derivation of the path decomposition expansion, Phys. Lett. A 207 (1995) 237.MathSciNetADSGoogle Scholar
  46. [46]
    K. Chung, Probabilistic approach in potential theory to the equilibrium problem, Ann. Inst. Fourier 23 (1973) 313.MATHCrossRefGoogle Scholar
  47. [47]
    P. Hsu, On excursions of reflecting brownian motion, Trans. Amer. Math. Soc. 296 (1986) 239.MathSciNetMATHCrossRefGoogle Scholar
  48. [48]
    A. Polyanin, A. Manzhirov and A. Polianin, Handbook of integral equations, CRC press (1998).Google Scholar
  49. [49]
    D. Porter and D. Stirling, Integral equations: a practical treatment, from spectral theory to applications, Cambridge University Press, Cambridge, U.K. (1990).MATHCrossRefGoogle Scholar
  50. [50]
    P. Hsu, Probabilistic approach to the neumann problem, Commun. Pur. Appl. Math. 38 (1985) 445.MATHCrossRefGoogle Scholar
  51. [51]
    P. Hsu, On the θ-function of a riemannian manifold with boundary, Transactions of the American Mathematical Society (1992) 643 [http://www.jstor.org/stable/10.2307/2154052].
  52. [52]
    M. Berry and M. Dennis, Boundary-condition-varying circle billiards and gratings: the dirichlet singularity, J. Phys. A 41 (2008) 135203.MathSciNetADSGoogle Scholar
  53. [53]
    M. Marletta and G. Rozenblum, A laplace operator with boundary conditions singular at one point, J. Phys. A 42 (2009) 125204.MathSciNetADSGoogle Scholar
  54. [54]
    L. Schulman, Techniques and applications of path integration. John Wiley & Sons Inc. (1981), reprinted by Dover (2005).Google Scholar
  55. [55]
    P. Mörters and Y. Peres, Brownian Motion, 1 ed., Cambridge University Press, Cambridge, U.K. (2010).MATHGoogle Scholar
  56. [56]
    K. Burdzy, Z. Chen and J. Sylvester, The heat equation and reflected brownian motion in time-dependent domains, Annals of probability 32 (2004) 775.MathSciNetMATHCrossRefGoogle Scholar
  57. [57]
    T. Lorenz, Reynolds transport theorem for differential inclusions, Set-Valued Analysis 14 (2006) 209.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.University of CambridgeCambridgeUnited Kingdom

Personalised recommendations