Advertisement

Journal of High Energy Physics

, 2019:164 | Cite as

Superconformal blocks for mixed 1/2-BPS correlators with SU(2) R-symmetry

  • Florent BaumeEmail author
  • Michael Fuchs
  • Craig Lawrie
Open Access
Regular Article - Theoretical Physics
  • 334 Downloads

Abstract

For SCFTs with an SU(2) R-symmetry, we determine the superconformal blocks that contribute to the four-point correlation function of a priori distinct half-BPS superconformal primaries as an expansion in terms of the relevant bosonic conformal blocks. This is achieved by using the superconformal Casimir equation and the superconformal Ward identity to fix the coefficients of the bosonic blocks uniquely in a dimension-independent way. In addition we find that many of the resulting coefficients are related through a web of linear transformations of the conformal data.

Keywords

Conformal Field Theory Extended Supersymmetry 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Supplementary material

13130_2019_11880_MOESM1_ESM.m (37 kb)
ESM 1 (M 36 kb)

References

  1. [1]
    M. Lüscher, Operator product expansions on the vacuum in conformal quantum field theory in two spacetime dimensions, Commun. Math. Phys.50 (1976) 23 [INSPIRE].
  2. [2]
    G. Mack, Convergence of operator product expansions on the vacuum in conformal invariant quantum field theory, Commun. Math. Phys.53 (1977) 155 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    F.A. Dolan and H. Osborn, Conformal four point functions and the operator product expansion, Nucl. Phys.B 599 (2001) 459 [hep-th/0011040] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    F.A. Dolan and H. Osborn, Conformal partial waves and the operator product expansion, Nucl. Phys.B 678 (2004) 491 [hep-th/0309180] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT, JHEP12 (2008) 031 [arXiv:0807.0004] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    S. Rychkov, EPFL lectures on conformal field theory in ≥ 3 dimensions, Briefs in Physics, Springer, Germany (2016), arXiv:1601.05000.
  7. [7]
    D. Simmons-Duffin, The Conformal Bootstrap, in the proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics: New Frontiers in Fields and Strings (TASI 2015), June 1–26, Boulder, U.S.A. (2015), arXiv:1602.07982 [INSPIRE].
  8. [8]
    D. Poland, S. Rychkov and A. Vichi, The conformal bootstrap: theory, numerical techniques and applications, Rev. Mod. Phys.91 (2019) 015002 [arXiv:1805.04405] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    S.M. Chester, Weizmann lectures on the numerical conformal bootstrap, arXiv:1907.05147 [INSPIRE].
  10. [10]
    S. Ferrara, A.F. Grillo and R. Gatto, Manifestly conformal covariant operator-product expansion, Lett. Nuovo Cim.2S2 (1971) 1363 [INSPIRE].
  11. [11]
    A.A. Migdal, Conformal invariance and bootstrap, Phys. Lett.B 37 (1971) 386.ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    S. Ferrara, A.F. Grillo, G. Parisi and R. Gatto, Covariant expansion of the conformal four-point function, Nucl. Phys.B 49 (1972) 77 [Erratum ibid.B 53 (1973) 643] [INSPIRE].
  13. [13]
    S. Ferrara, A.F. Grillo and R. Gatto, Tensor representations of conformal algebra and conformally covariant operator product expansion, Annals Phys.76 (1973) 161 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    A.M. Polyakov, Nonhamiltonian approach to conformal quantum field theory, Zh. Eksp. Teor. Fiz.66 (1974) 23 [INSPIRE].Google Scholar
  15. [15]
    S. Ferrara, R. Gatto and A.F. Grillo, Properties of partial wave amplitudes in conformal invariant field theories, Nuovo Cim.A 26 (1975) 226 [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    S. Ferrara, R. Gatto and A.F. Grillo, Positivity restrictions on anomalous dimensions, Phys. Rev.D 9 (1974) 3564 [INSPIRE].ADSGoogle Scholar
  17. [17]
    S. Ferrara, A.F. Grillo, R. Gatto and G. Parisi, Analyticity properties and asymptotic expansions of conformal covariant green’s functions, Nuovo Cim.A 19 (1974) 667 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    V.K. Dobrev et al., Harmonic analysis on the n-dimensional Lorentz group and its application to conformal quantum field theory, Lect. Notes Phys.63 (1977) 1 [INSPIRE].CrossRefGoogle Scholar
  19. [19]
    M. Buican, J. Hayling and C. Papageorgakis, Aspects of superconformal multiplets in D > 4, JHEP11 (2016) 091 [arXiv:1606.00810] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  20. [20]
    C. Cordova, T.T. Dumitrescu and K. Intriligator, Multiplets of superconformal symmetry in diverse dimensions, JHEP03 (2019) 163 [arXiv:1612.00809] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  21. [21]
    S.M. Chester, J. Lee, S.S. Pufu and R. Yacoby, Exact correlators of BPS operators from the 3d superconformal bootstrap, JHEP03 (2015) 130 [arXiv:1412.0334] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
  22. [22]
    P. Liendo and C. Meneghelli, Bootstrap equations for \( \mathcal{N} \) = 4 SYM with defects, JHEP01 (2017) 122 [arXiv:1608.05126] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  23. [23]
    C. Bee et al., The \( \mathcal{N} \) = 2 superconformal bootstrap, JHEP03 (2016) 183 [arXiv:1412.7541] [INSPIRE].ADSGoogle Scholar
  24. [24]
    M. Lemos and P. Liendo, Bootstrapping \( \mathcal{N} \) = 2 chiral correlators, JHEP01 (2016) 025 [arXiv:1510.03866] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  25. [25]
    C.-M. Chang, M. Fluder, Y.-H. Lin and Y. Wang, Spheres, charges, instantons and bootstrap: a five-dimensional odyssey, JHEP03 (2018) 123 [arXiv:1710.08418] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  26. [26]
    C.-M. Chang and Y.-H. Lin, Carving out the end of the world or (superconformal bootstrap in six dimensions), JHEP08 (2017) 128 [arXiv:1705.05392] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  27. [27]
    N. Bobev, E. Lauria and D. Mazac, Superconformal blocks for SCFTs with eight supercharges, JHEP07 (2017) 061 [arXiv:1705.08594] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  28. [28]
    C. Beem et al., Infinite chiral symmetry in four dimensions, Commun. Math. Phys.336 (2015) 1359 [arXiv:1312.5344] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  29. [29]
    N.B. Agmon, S.M. Chester and S.S. Pufu, Solving M-theory with the conformal bootstrap, JHEP06 (2018) 159 [arXiv:1711.07343] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  30. [30]
    N.B. Agmon, S.M. Chester and S.S. Pufu, The M-theory archipelago, arXiv:1907.13222 [INSPIRE].
  31. [31]
    F.A. Dolan and H. Osborn, Superconformal symmetry, correlation functions and the operator product expansion, Nucl. Phys.B 629 (2002) 3 [hep-th/0112251] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  32. [32]
    F.A. Dolan, L. Gallot and E. Sokatchev, On four-point functions of 1/2-BPS operators in general dimensions, JHEP09 (2004) 056 [hep-th/0405180] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    M. Nirschl and H. Osborn, Superconformal Ward identities and their solution, Nucl. Phys.B 711 (2005) 409 [hep-th/0407060] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  34. [34]
    N. Bobev, S. El-Showk, D. Mazac and M.F. Paulos, Bootstrapping SCFTs with four supercharges, JHEP08 (2015) 142 [arXiv:1503.02081] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  35. [35]
    N. Seiberg and E. Witten, Comments on string dynamics in six-dimensions, Nucl. Phys.B 471 (1996) 121 [hep-th/9603003] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  36. [36]
    O.J. Ganor and A. Hanany, Small E8 instantons and tensionless noncritical strings, Nucl. Phys.B 474 (1996) 122 [hep-th/9602120] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  37. [37]
    D. Gaiotto, N = 2 dualities, JHEP08 (2012) 034 [arXiv:0904.2715] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    J.J. Heckman and C. Vafa, Fine tuning, sequestering and the swampland, Phys. Lett.B 798 (2019) 135004 [arXiv:1905.06342] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  39. [39]
    W. Nahm, Supersymmetries and their representations, Nucl. Phys.B 135 (1978) 149 [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    F.A. Dolan and H. Osborn, On short and semi-short representations for four-dimensional superconformal symmetry, Annals Phys.307 (2003) 41 [hep-th/0209056] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  41. [41]
    F.A. Dolan and H. Osborn, Conformal partial waves: further mathematical results, arXiv:1108.6194 [INSPIRE].
  42. [42]
    S. Minwalla, Restrictions imposed by superconformal invariance on quantum field theories, Adv. Theor. Math. Phys.2 (1998) 783 [hep-th/9712074] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
  43. [43]
    S. Ferrara and E. Sokatchev, Universal properties of superconformal OPEs for 1/2 BPS operators in 3 ≤ D ≤ 6, New J. Phys.4 (2002) 2 [hep-th/0110174] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  44. [44]
    V.K. Dobrev and V.B. Petkova, All positive energy unitary irreducible representations of extended conformal supersymmetry, Phys. Lett.B 162 (1985) 127.ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    V.K. Dobrev and V.B. Petkova, On the group theoretical approach to extended conformal supersymmetry: classification of multiplets, Lett. Math. Phys.9 (1985) 287 [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  46. [46]
    V.K. Dobrev and V.B. Petkova, Group theoretical approach to extended conformal supersymmetry: function space realizations and invariant differential operators, Fortsch. Phys.35 (1987) 537 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    J. Bhattacharya, S. Bhattacharyya, S. Minwalla and S. Raju, Indices for superconformal field theories in 3, 5 and 6 dimensions, JHEP02 (2008) 064 [arXiv:0801.1435] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    C. Cordova, T.T. Dumitrescu and K. Intriligator, Deformations of superconformal theories, JHEP11 (2016) 135 [arXiv:1602.01217] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  49. [49]
    M. Hogervorst and S. Rychkov, Radial coordinates for conformal blocks, Phys. Rev.D 87 (2013) 106004 [arXiv:1303.1111] [INSPIRE].ADSGoogle Scholar
  50. [50]
    M.S. Costa, T. Hansen, J. Penedones and E. Trevisani, Radial expansion for spinning conformal blocks, JHEP07 (2016) 057 [arXiv:1603.05552] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  51. [51]
    F. Kos, D. Poland and D. Simmons-Duffin, Bootstrapping the O(N) vector models, JHEP06 (2014) 091 [arXiv:1307.6856] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  52. [52]
    F. Kos, D. Poland and D. Simmons-Duffin, Bootstrapping mixed correlators in the 3D Ising model, JHEP11 (2014) 109 [arXiv:1406.4858] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  53. [53]
    J. Penedones, E. Trevisani and M. Yamazaki, Recursion relations for conformal blocks, JHEP09 (2016) 070 [arXiv:1509.00428] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  54. [54]
    R. Rattazzi, S. Rychkov and A. Vichi, Bounds in 4D conformal field theories with global symmetry, J. Phys.A 44 (2011) 035402 [arXiv:1009.5985] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  55. [55]
    S.M. Chester, J. Lee, S.S. Pufu and R. Yacoby, The \( \mathcal{N} \) = 8 superconformal bootstrap in three dimensions, JHEP09 (2014) 143 [arXiv:1406.4814] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    A.L. Fitzpatrick et al., Covariant approaches to superconformal blocks, JHEP08 (2014) 129 [arXiv:1402.1167] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    F. Kos, D. Poland, D. Simmons-Duffin and A. Vichi, Bootstrapping the O(N) archipelago, JHEP11 (2015) 106 [arXiv:1504.07997] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  58. [58]
    F. Kos, D. Poland, D. Simmons-Duffin and A. Vichi, Precision islands in the Ising and O(N) models, JHEP08 (2016) 036 [arXiv:1603.04436] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  59. [59]
    Z. Li and N. Su, Bootstrapping mixed correlators in the five dimensional critical O(N) models, JHEP04 (2017) 098 [arXiv:1607.07077] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    D. Li, D. Meltzer and A. Stergiou, Bootstrapping mixed correlators in 4D \( \mathcal{N} \) = 1 SCFTs, JHEP07 (2017) 029 [arXiv:1702.00404] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  61. [61]
    J. Rong and N. Su, Bootstrapping minimal \( \mathcal{N} \) = 1 superconformal field theory in three dimensions, arXiv:1807.04434 [INSPIRE].
  62. [62]
    S.R. Kousvos and A. Stergiou, Bootstrapping mixed correlators in three-dimensional cubic theories, SciPost Phys.6 (2019) 035 [arXiv:1810.10015] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    C. Beem, M. Lemos, L. Rastelli and B.C. van Rees, The (2, 0) superconformal bootstrap, Phys. Rev.D 93 (2016) 025016 [arXiv:1507.05637] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  64. [64]
    J.J. Heckman, D.R. Morrison and C. Vafa, On the classification of 6D SCFTs and generalized ADE orbifolds, JHEP05 (2014) 028 [Erratum ibid.06 (2015) 017] [arXiv:1312.5746] [INSPIRE].
  65. [65]
    J.J. Heckman, D.R. Morrison, T. Rudelius and C. Vafa, Atomic Classification of 6D SCFTs, Fortsch. Phys.63 (2015) 468 [arXiv:1502.05405] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  66. [66]
    L. Bhardwaj, D.R. Morrison, Y. Tachikawa and A. Tomasiello, The frozen phase of F-theory, JHEP08 (2018) 138 [arXiv:1805.09070] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  67. [67]
    J.J. Heckman and T. Rudelius, Top down approach to 6D SCFTs, J. Phys.A 52 (2019) 093001 [arXiv:1805.06467] [INSPIRE].ADSGoogle Scholar
  68. [68]
    F. Baume, M. Fuchs and C. Lawrie, Solving superconformal matter: a 6D bootstrap story, to appear.Google Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Instituto de Física Teórica UAM-CSICMadridSpain
  2. 2.Department of Physics and AstronomyUniversity of PennsylvaniaPhiladelphiaU.S.A.

Personalised recommendations