Advertisement

Journal of High Energy Physics

, 2019:159 | Cite as

Forbidden frozen-in dark matter

  • L. Darmé
  • A. Hryczuk
  • D. KaramitrosEmail author
  • L. Roszkowski
Open Access
Regular Article - Theoretical Physics

Abstract

We examine and point out the importance of a regime of dark matter pro- duction through the freeze-in mechanism that results from a large thermal correction to a decaying mediator particle mass from hot plasma in the early Universe. We show that mediator decays to dark matter that are kinematically forbidden at the usually considered ranges of low temperatures can be generically present at higher temperatures and actually dominate the overall dark matter production, thus leading to very distinct solutions from the standard case. We illustrate these features by considering a dark Higgs portal model where dark matter is produced via decays of a scalar field with a large thermal mass. We identify the resulting ranges of parameters that are consistent with the correct dark matter relic abundance and further apply current and expected future collider, cosmological, and astrophysical limits.

Keywords

Cosmology of Theories beyond the SM Beyond Standard Model 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    H. Baer, K.-Y. Choi, J.E. Kim and L. Roszkowski, Dark matter production in the early Universe: beyond the thermal WIMP paradigm, Phys. Rept.555 (2015) 1 [arXiv:1407.0017] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    D.J.E. Marsh, Axion Cosmology, Phys. Rept.643 (2016) 1 [arXiv:1510.07633] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    A.E. Nelson and J. Scholtz, Dark Light, Dark Matter and the Misalignment Mechanism, Phys. Rev.D 84 (2011) 103501 [arXiv:1105.2812] [INSPIRE].ADSGoogle Scholar
  4. [4]
    P. Arias, D. Cadamuro, M. Goodsell, J. Jaeckel, J. Redondo and A. Ringwald, WISPy Cold Dark Matter, JCAP06 (2012) 013 [arXiv:1201.5902] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    L.J. Hall, K. Jedamzik, J. March-Russell and S.M. West, Freeze-In Production of FIMP Dark Matter, JHEP03 (2010) 080 [arXiv:0911.1120] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    J.R. Ellis, J.E. Kim and D.V. Nanopoulos, Cosmological Gravitino Regeneration and Decay, Phys. Lett.145B (1984) 181 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    L. Covi, H.-B. Kim, J.E. Kim and L. Roszkowski, Axinos as dark matter, JHEP05 (2001) 033 [hep-ph/0101009] [INSPIRE].
  8. [8]
    J. McDonald, Thermally generated gauge singlet scalars as selfinteracting dark matter, Phys. Rev. Lett.88 (2002) 091304 [hep-ph/0106249] [INSPIRE].
  9. [9]
    M. Blennow, E. Fernandez-Martinez and B. Zaldivar, Freeze-in through portals, JCAP01 (2014) 003 [arXiv:1309.7348] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    C. Dvorkin, T. Lin and K. Schutz, Making dark matter out of light: freeze-in from plasma effects, Phys. Rev.D 99 (2019) 115009 [arXiv:1902.08623] [INSPIRE].ADSGoogle Scholar
  11. [11]
    V.S. Rychkov and A. Strumia, Thermal production of gravitinos, Phys. Rev.D 75 (2007) 075011 [hep-ph/0701104] [INSPIRE].
  12. [12]
    A. Strumia, Thermal production of axino Dark Matter, JHEP06 (2010) 036 [arXiv:1003.5847] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    M. Drewes and J.U. Kang, Sterile neutrino Dark Matter production from scalar decay in a thermal bath, JHEP05 (2016) 051 [arXiv:1510.05646] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    M.J. Baker, M. Breitbach, J. Kopp and L. Mittnacht, Dynamic Freeze-In: Impact of Thermal Masses and Cosmological Phase Transitions on Dark Matter Production, JHEP03 (2018) 114 [arXiv:1712.03962] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    L. Bian and Y.-L. Tang, Thermally modified sterile neutrino portal dark matter and gravitational waves from phase transition: The freeze-in case, JHEP12 (2018) 006 [arXiv:1810.03172] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    M. Aoki, T. Toma and A. Vicente, Non-thermal Production of Minimal Dark Matter via Right-handed Neutrino Decay, JCAP09 (2015) 063 [arXiv:1507.01591] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    S. Yaser Ayazi, S.M. Firouzabadi and S.P. Zakeri, Freeze-in production of Fermionic Dark Matter with Pseudo-scalar and Phenomenological Aspects, J. Phys.G 43 (2016) 095006 [arXiv:1511.07736] [INSPIRE].
  18. [18]
    B. Shakya, Sterile Neutrino Dark Matter from Freeze-In, Mod. Phys. Lett.A 31 (2016) 1630005 [arXiv:1512.02751] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    K.-H. Tsao, FIMP Dark Matter Freeze-in Gauge Mediation and Hidden Sector, J. Phys.G 45 (2018) 075001 [arXiv:1710.06572] [INSPIRE].
  20. [20]
    A. Dedes, D. Karamitros and A. Pilaftsis, Radiative Light Dark Matter, Phys. Rev.D 95 (2017) 115037 [arXiv:1704.01497] [INSPIRE].ADSGoogle Scholar
  21. [21]
    K.J. Bae, A. Kamada, S.P. Liew and K. Yanagi, Light axinos from freeze-in: production processes, phase space distributions and Ly-α forest constraints, JCAP01 (2018) 054 [arXiv:1707.06418] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    M. Duch, B. Grzadkowski and D. Huang, Strongly self-interacting vector dark matter via freeze-in, JHEP01 (2018) 020 [arXiv:1710.00320] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    A. Biswas, D. Borah and A. Dasgupta, UV complete framework of freeze-in massive particle dark matter, Phys. Rev.D 99 (2019) 015033 [arXiv:1805.06903] [INSPIRE].
  24. [24]
    G. Bhattacharyya, M. Dutra, Y. Mambrini and M. Pierre, Freezing-in dark matter through a heavy invisible Z’, Phys. Rev.D 98 (2018) 035038 [arXiv:1806.00016] [INSPIRE].
  25. [25]
    A. Goudelis, K.A. Mohan and D. Sengupta, Clockworking FIMPs, JHEP10 (2018) 014 [arXiv:1807.06642] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    G. Bélanger et al., LHC-friendly minimal freeze-in models, JHEP02 (2019) 186 [arXiv:1811.05478] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    W. Abdallah, S. Choubey and S. Khan, FIMP dark matter candidate(s) in a B − L model with inverse seesaw mechanism, JHEP06 (2019) 095 [arXiv:1904.10015] [INSPIRE].Google Scholar
  28. [28]
    S. Heeba, F. Kahlhoefer and P. Stöcker, Freeze-in production of decaying dark matter in five steps, JCAP11 (2018) 048 [arXiv:1809.04849] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    A.K. Das, Finite Temperature Field Theory, World Scientific, New York, U.S.A., (1997).CrossRefGoogle Scholar
  30. [30]
    J.I. Kapusta and C. Gale, Finite-temperature field theory: Principles and applications, Cambridge Monographs on Mathematical Physics, Cambridge University Press, (2011).zbMATHGoogle Scholar
  31. [31]
    M.L. Bellac, Thermal Field Theory, Cambridge Monographs on Mathematical Physics, Cambridge University Press, (2011).Google Scholar
  32. [32]
    Z. Fodor and A. Hebecker, Finite temperature effective potential to order g 4, λ 2and the electroweak phase transition, Nucl. Phys.B 432 (1994) 127 [hep-ph/9403219] [INSPIRE].
  33. [33]
    E. Braaten and D. Segel, Neutrino energy loss from the plasma process at all temperatures and densities, Phys. Rev.D 48 (1993) 1478 [hep-ph/9302213] [INSPIRE].
  34. [34]
    G. Bélanger, F. Boudjema, A. Goudelis, A. Pukhov and B. Zaldivar, MicrOMEGAs5.0: Freeze-in, Comput. Phys. Commun.231 (2018) 173 [arXiv:1801.03509] [INSPIRE].
  35. [35]
    M. Drees, F. Hajkarim and E.R. Schmitz, The Effects of QCD Equation of State on the Relic Density of WIMP Dark Matter, JCAP06 (2015) 025 [arXiv:1503.03513] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    F. Elahi, C. Kolda and J. Unwin, UltraViolet Freeze-in, JHEP03 (2015) 048 [arXiv:1410.6157] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    L. Roszkowski, E.M. Sessolo and S. Trojanowski, WIMP dark matter candidates and searches — current status and future prospects, Rept. Prog. Phys.81 (2018) 066201 [arXiv:1707.06277] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    G. Bélanger, B. Dumont, U. Ellwanger, J.F. Gunion and S. Kraml, Global fit to Higgs signal strengths and couplings and implications for extended Higgs sectors, Phys. Rev.D 88 (2013) 075008 [arXiv:1306.2941] [INSPIRE].
  39. [39]
    LHC Higgs Cross Section Working Group collaboration, Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables, arXiv:1101.0593 [INSPIRE].
  40. [40]
    A. Fradette and M. Pospelov, BBN for the LHC: constraints on lifetimes of the Higgs portal scalars, Phys. Rev.D 96 (2017) 075033 [arXiv:1706.01920] [INSPIRE].
  41. [41]
    M.W. Winkler, Decay and detection of a light scalar boson mixing with the Higgs boson, Phys. Rev.D 99 (2019) 015018 [arXiv:1809.01876] [INSPIRE].
  42. [42]
    T. Binder, T. Bringmann, M. Gustafsson and A. Hryczuk, Early kinetic decoupling of dark matter: when the standard way of calculating the thermal relic density fails, Phys. Rev.D 96 (2017) 115010 [arXiv:1706.07433] [INSPIRE].ADSGoogle Scholar
  43. [43]
    F. Feroz, M.P. Hobson and M. Bridges, MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics, Mon. Not. Roy. Astron. Soc.398 (2009) 1601 [arXiv:0809.3437] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    Planck collaboration, Planck 2018 results. VI. Cosmological parameters, arXiv:1807.06209 [INSPIRE].
  45. [45]
    F. Staub, SARAH, arXiv:0806.0538 [INSPIRE].
  46. [46]
    F. Staub, SARAH 3.2: Dirac Gauginos, UFO output and more, Comput. Phys. Commun.184 (2013) 1792 [arXiv:1207.0906] [INSPIRE].
  47. [47]
    F. Staub, SARAH 4: A tool for (not only SUSY) model builders, Comput. Phys. Commun.185 (2014) 1773 [arXiv:1309.7223] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    J. Beacham et al., Physics Beyond Colliders at CERN: Beyond the Standard Model Working Group Report, arXiv:1901.09966 [INSPIRE].
  49. [49]
    G. Krnjaic, Probing Light Thermal Dark-Matter With a Higgs Portal Mediator, Phys. Rev.D 94 (2016) 073009 [arXiv:1512.04119] [INSPIRE].
  50. [50]
    A. Burrows and J.M. Lattimer, The birth of neutron stars, Astrophys. J.307 (1986) 178 [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    A. Burrows and J.M. Lattimer, Neutrinos from SN 1987A, Astrophys. J.318 (1987) L63 [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    G.G. Raffelt, Stars as laboratories for fundamental physics, (1996).Google Scholar
  53. [53]
    CHARM collaboration, Search for Axion Like Particle Production in 400-GeV Proton — Copper Interactions, Phys. Lett.157B (1985) 458 [INSPIRE].
  54. [54]
    S. Alekhin et al., A facility to Search for Hidden Particles at the CERN SPS: the SHiP physics case, Rept. Prog. Phys.79 (2016) 124201 [arXiv:1504.04855] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    J.L. Feng, I. Galon, F. Kling and S. Trojanowski, Dark Higgs bosons at the ForwArd Search ExpeRiment, Phys. Rev.D 97 (2018) 055034 [arXiv:1710.09387] [INSPIRE].
  56. [56]
    E949 collaboration, New measurement of the K +→ π +ν \( \overline{\nu} \)branching ratio, Phys. Rev. Lett.101 (2008) 191802 [arXiv:0808.2459] [INSPIRE].
  57. [57]
    LHCb collaboration, Search for long-lived scalar particles in B +→ K +χ(μ +μ ) decays, Phys. Rev.D 95 (2017) 071101 [arXiv:1612.07818] [INSPIRE].
  58. [58]
    D. Curtin et al., Long-Lived Particles at the Energy Frontier: The MATHUSLA Physics Case, Rept. Prog. Phys.82 (2019) 116201 [arXiv:1806.07396] [INSPIRE].CrossRefGoogle Scholar
  59. [59]
    V.V. Gligorov, S. Knapen, M. Papucci and D.J. Robinson, Searching for Long-lived Particles: A Compact Detector for Exotics at LHCb, Phys. Rev.D 97 (2018) 015023 [arXiv:1708.09395] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.National Centre for Nuclear ResearchWarsawPoland
  2. 2.Astrocent, Nicolaus Copernicus Astronomical Center Polish Academy of SciencesWarsawPoland

Personalised recommendations