Halving ISO(7) supergravity
- 13 Downloads
Abstract
Half-maximal, \( \mathcal{N} \) = 4, sectors of D = 4 \( \mathcal{N} \) = 8 supergravity with a dyonic ISO(7) gauging are investigated. We focus on a half-maximal sector including three vector multiplets, that arises as a certain SO(3)R-invariant sector of the full theory. We discuss the embedding of this sector into the largest half-maximal sector of the \( \mathcal{N} \) = 8 supergravity retaining six vector multiplets. We also provide its canonical \( \mathcal{N} \) = 4 formulation and show that, from this perspective, our model leads in its own right to a new explicit gauging of \( \mathcal{N} \) = 4 supergravity. Finally, expressions for the restricted duality hierarchy are given and the vacuum structure is investigated. Five new non-supersymmetric AdS vacua are found numerically. The previously known \( \mathcal{N} \) = 2 and \( \mathcal{N} \) = 3 AdS vacua are also contained in our \( \mathcal{N} \) = 4 model. Unlike when embedded in previously considered sectors with fewer fields, these vacua exhibit their full \( \mathcal{N} \) = 2 and \( \mathcal{N} \) = 3 supersymmetry within our \( \mathcal{N} \) = 4 model.
Keywords
Extended Supersymmetry Supergravity Models Supersymmetry and Duality AdS-CFT CorrespondenceNotes
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited
References
- [1]J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetzbMATHGoogle Scholar
- [2]M. Pernici, K. Pilch and P. van Nieuwenhuizen, Gauged Maximally Extended Supergravity in Seven-dimensions, Phys. Lett.143B (1984) 103 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [3]M. Günaydin, L.J. Romans and N.P. Warner, Gauged N = 8 Supergravity in Five-Dimensions, Phys. Lett.154B (1985) 268 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [4]B. de Wit and H. Nicolai, N = 8 Supergravity, Nucl. Phys.B 208 (1982) 323 [INSPIRE].ADSCrossRefGoogle Scholar
- [5]O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP10 (2008) 091 [arXiv:0806.1218] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [6]A. Guarino, D.L. Jafferis and O. Varela, String Theory Origin of Dyonic N = 8 Supergravity and Its Chern-Simons Duals, Phys. Rev. Lett.115 (2015) 091601 [arXiv:1504.08009] [INSPIRE].ADSCrossRefGoogle Scholar
- [7]G. Dall’Agata, G. Inverso and M. Trigiante, Evidence for a family of SO(8) gauged supergravity theories, Phys. Rev. Lett.109 (2012) 201301 [arXiv:1209.0760] [INSPIRE].ADSCrossRefGoogle Scholar
- [8]G. Dall’Agata, G. Inverso and A. Marrani, Symplectic Deformations of Gauged Maximal Supergravity, JHEP07 (2014) 133 [arXiv:1405.2437] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [9]G. Inverso, Electric-magnetic deformations of D = 4 gauged supergravities, JHEP03 (2016) 138 [arXiv:1512.04500] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [10]C.M. Hull, A New Gauging of N = 8 Supergravity, Phys. Rev.D 30 (1984) 760 [INSPIRE].ADSMathSciNetGoogle Scholar
- [11]C.M. Hull and N.P. Warner, Noncompact Gaugings From Higher Dimensions, Class. Quant. Grav.5 (1988) 1517 [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [12]F. Giani and M. Pernici, N = 2 supergravity in ten-dimensions, Phys. Rev.D 30 (1984) 325 [INSPIRE].ADSMathSciNetGoogle Scholar
- [13]G. Dall’Agata and G. Inverso, On the Vacua of N = 8 Gauged Supergravity in 4 Dimensions, Nucl. Phys.B 859 (2012) 70 [arXiv:1112.3345] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [14]A. Guarino and O. Varela, Dyonic ISO(7) supergravity and the duality hierarchy, JHEP02 (2016) 079 [arXiv:1508.04432] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [15]A. Guarino and O. Varela, Consistent \( \mathcal{N} \) = 8 truncation of massive IIA on S 6 , JHEP12 (2015) 020 [arXiv:1509.02526] [INSPIRE].ADSzbMATHGoogle Scholar
- [16]F. Ciceri, A. Guarino and G. Inverso, The exceptional story of massive IIA supergravity, JHEP08 (2016) 154 [arXiv:1604.08602] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [17]D. Cassani, O. de Felice, M. Petrini, C. Strickland-Constable and D. Waldram, Exceptional generalised geometry for massive IIA and consistent reductions, JHEP08 (2016) 074 [arXiv:1605.00563] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [18]G. Inverso, H. Samtleben and M. Trigiante, Type II supergravity origin of dyonic gaugings, Phys. Rev.D 95 (2017) 066020 [arXiv:1612.05123] [INSPIRE].
- [19]L.J. Romans, Massive N=2a Supergravity in Ten-Dimensions, Phys. Lett.169B (1986) 374 [INSPIRE].ADSCrossRefGoogle Scholar
- [20]A. Borghese, A. Guarino and D. Roest, All G 2invariant critical points of maximal supergravity, JHEP12 (2012) 108 [arXiv:1209.3003] [INSPIRE].ADSzbMATHCrossRefMathSciNetGoogle Scholar
- [21]A. Gallerati, H. Samtleben and M. Trigiante, The \( \mathcal{N} \)> 2 supersymmetric AdS vacua in maximal supergravity, JHEP12 (2014) 174 [arXiv:1410.0711] [INSPIRE].ADSCrossRefGoogle Scholar
- [22]O. Varela, AdS4 solutions of massive IIA from dyonic ISO(7) supergravity, JHEP03 (2016) 071 [arXiv:1509.07117] [INSPIRE].ADSCrossRefGoogle Scholar
- [23]Y. Pang and J. Rong, N = 3 solution in dyonic ISO(7) gauged maximal supergravity and its uplift to massive type IIA supergravity, Phys. Rev.D 92 (2015) 085037 [arXiv:1508.05376] [INSPIRE].
- [24]G.B. De Luca, G.L. Monaco, N.T. Macpherson, A. Tomasiello and O. Varela, The geometry of \( \mathcal{N} \) = 3 AdS 4in massive IIA, JHEP08 (2018) 133 [arXiv:1805.04823] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
- [25]J.H. Schwarz, Superconformal Chern-Simons theories, JHEP11 (2004) 078 [hep-th/0411077] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [26]D. Gaiotto and X. Yin, Notes on superconformal Chern-Simons-Matter theories, JHEP08 (2007) 056 [arXiv:0704.3740] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [27]A. Guarino, J. Tarrío and O. Varela, Romans-mass-driven flows on the D2-brane, JHEP08 (2016) 168 [arXiv:1605.09254] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [28]Y. Pang and J. Rong, Evidence for the Holographic dual of \( \mathcal{N} \) = 3 Solution in Massive Type IIA, Phys. Rev.D 93 (2016) 065038 [arXiv:1511.08223] [INSPIRE].
- [29]Y. Pang, J. Rong and O. Varela, Spectrum universality properties of holographic Chern-Simons theories, JHEP01 (2018) 061 [arXiv:1711.07781] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [30]N. Bobev, P. Bomans and F.F. Gautason, Spherical Branes, JHEP08 (2018) 029 [arXiv:1805.05338] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [31]M. Suh, Supersymmetric Janus solutions of dyonic ISO(7)-gauged \( \mathcal{N} \) = 8 supergravity, JHEP04 (2018) 109 [arXiv:1803.00041] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
- [32]A. Guarino and J. Tarrío, BPS black holes from massive IIA on S 6, JHEP09 (2017) 141 [arXiv:1703.10833] [INSPIRE].ADSzbMATHCrossRefMathSciNetGoogle Scholar
- [33]S.M. Hosseini, K. Hristov and A. Passias, Holographic microstate counting for AdS 4black holes in massive IIA supergravity, JHEP10 (2017) 190 [arXiv:1707.06884] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
- [34]A. Guarino, BPS black hole horizons from massive IIA, JHEP08 (2017) 100 [arXiv:1706.01823] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [35]F. Azzurli, N. Bobev, P.M. Crichigno, V.S. Min and A. Zaffaroni, A universal counting of black hole microstates in AdS 4, JHEP02 (2018) 054 [arXiv:1707.04257] [INSPIRE].ADSzbMATHCrossRefMathSciNetGoogle Scholar
- [36]F. Benini, H. Khachatryan and P. Milan, Black hole entropy in massive Type IIA, Class. Quant. Grav.35 (2018) 035004 [arXiv:1707.06886] [INSPIRE].
- [37]J.T. Liu, L.A. Pando Zayas and S. Zhou, Subleading Microstate Counting in the Dual to Massive Type IIA, arXiv:1808.10445 [INSPIRE].
- [38]M. Fluder and J. Sparks, D2-brane Chern-Simons theories: F-maximization = a-maximization, JHEP01 (2016) 048 [arXiv:1507.05817] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [39]T.R. Araujo and H. Nastase, Observables in the Guarino-Jafferis-Varela/CS-SYM duality, JHEP07 (2017) 020 [arXiv:1609.08008] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [40]T. Araujo, G. Itsios, H. Nastase and E. Ó Colgáin, Penrose limits and spin chains in the GJV/CS-SYM duality, JHEP12 (2017) 137 [arXiv:1706.02711] [INSPIRE].
- [41]B. de Wit and H. Nicolai, Deformations of gauged SO(8) supergravity and supergravity in eleven dimensions, JHEP05 (2013) 077 [arXiv:1302.6219] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
- [42]K. Lee, C. Strickland-Constable and D. Waldram, New Gaugings and Non-Geometry, Fortsch. Phys.65 (2017) 1700049 [arXiv:1506.03457] [INSPIRE].MathSciNetCrossRefGoogle Scholar
- [43]E. Cremmer, B. Julia and J. Scherk, Supergravity Theory in Eleven-Dimensions, Phys. Lett.76B (1978) 409 [INSPIRE].ADSCrossRefGoogle Scholar
- [44]B. de Wit and H. Nicolai, The Consistency of the S 7Truncation in D = 11 Supergravity, Nucl. Phys.B 281 (1987) 211 [INSPIRE].ADSCrossRefGoogle Scholar
- [45]S. Minwalla, P. Narayan, T. Sharma, V. Umesh and X. Yin, Supersymmetric States in Large N Chern-Simons-Matter Theories, JHEP02 (2012) 022 [arXiv:1104.0680] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [46]B. de Wit, H. Nicolai and H. Samtleben, Gauged Supergravities, Tensor Hierarchies and M-theory, JHEP02 (2008) 044 [arXiv:0801.1294] [INSPIRE].MathSciNetCrossRefGoogle Scholar
- [47]B. de Wit and H. Samtleben, The end of the p-form hierarchy, JHEP08 (2008) 015 [arXiv:0805.4767] [INSPIRE].MathSciNetCrossRefGoogle Scholar
- [48]E.A. Bergshoeff, J. Hartong, O. Hohm, M. Huebscher and T. Ortín, Gauge Theories, Duality Relations and the Tensor Hierarchy, JHEP04 (2009) 123 [arXiv:0901.2054] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [49]H. Kim, N. Kim and M. Suh, On the U(1)2-Invariant Sector of Dyonic Maximal Supergravity, J. Korean Phys. Soc.73 (2018) 249 [arXiv:1801.01286] [INSPIRE].ADSCrossRefGoogle Scholar
- [50]G. Dibitetto, A. Guarino and D. Roest, How to halve maximal supergravity, JHEP06 (2011) 030 [arXiv:1104.3587] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [51]J. Schon and M. Weidner, Gauged N = 4 supergravities, JHEP05 (2006) 034 [hep-th/0602024] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [52]B. de Wit, H. Samtleben and M. Trigiante, Magnetic charges in local field theory, JHEP09 (2005) 016 [hep-th/0507289] [INSPIRE].MathSciNetCrossRefGoogle Scholar
- [53]M. de Roo and P. Wagemans, Gauge Matter Coupling in N = 4 Supergravity, Nucl. Phys.B 262 (1985) 644 [INSPIRE].ADSCrossRefGoogle Scholar
- [54]M. de Roo, D.B. Westra and S. Panda, de Sitter solutions in N = 4 matter coupled supergravity, JHEP02 (2003) 003 [hep-th/0212216] [INSPIRE].
- [55]M. de Roo, D.B. Westra, S. Panda and M. Trigiante, Potential and mass matrix in gauged N = 4 supergravity, JHEP11 (2003) 022 [hep-th/0310187] [INSPIRE].MathSciNetCrossRefGoogle Scholar
- [56]M. de Roo, D.B. Westra and S. Panda, Gauging CSO groups in N = 4 Supergravity, JHEP09 (2006) 011 [hep-th/0606282] [INSPIRE].MathSciNetCrossRefGoogle Scholar
- [57]D. Roest and J. Rosseel, de Sitter in Extended Supergravity, Phys. Lett.B 685 (2010) 201 [arXiv:0912.4440] [INSPIRE].
- [58]G. Dibitetto, A. Guarino and D. Roest, Charting the landscape of N = 4 flux compactifications, JHEP03 (2011) 137 [arXiv:1102.0239] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [59]G. Dibitetto, A. Guarino and D. Roest, Exceptional Flux Compactifications, JHEP05 (2012) 056 [arXiv:1202.0770] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [60]A. Guarino, CSO csuperpotentials, Nucl. Phys.B 900 (2015) 501 [arXiv:1508.05055] [INSPIRE].ADSCrossRefMathSciNetzbMATHGoogle Scholar
- [61]P. Fré’, L. Gualtieri and P. Termonia, The structure of N = 3 multiplets in AdS 4and the complete Osp(3|4)xSU(3) spectrum of M-theory on AdS 4× N 0, 1, 0, Phys. Lett.B 471 (1999) 27 [hep-th/9909188] [INSPIRE].
- [62]A. Guarino, J. Tarrío and O. Varela, Flowing to \( \mathcal{N} \) = 3 Chern-Simons-matter theory, arXiv:1910.06866 [INSPIRE].
- [63]H. Lü, C.N. Pope and K.S. Stelle, M theory/heterotic duality: A Kaluza-Klein perspective, Nucl. Phys.B 548 (1999) 87 [hep-th/9810159] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [64]B. de Wit, H. Samtleben and M. Trigiante, The maximal D = 4 supergravities, JHEP06 (2007) 049 [arXiv:0705.2101] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar