Advertisement

Journal of High Energy Physics

, 2019:143 | Cite as

Halving ISO(7) supergravity

  • Adolfo GuarinoEmail author
  • Javier Tarrío
  • Oscar Varela
Open Access
Regular Article - Theoretical Physics
  • 13 Downloads

Abstract

Half-maximal, \( \mathcal{N} \) = 4, sectors of D = 4 \( \mathcal{N} \) = 8 supergravity with a dyonic ISO(7) gauging are investigated. We focus on a half-maximal sector including three vector multiplets, that arises as a certain SO(3)R-invariant sector of the full theory. We discuss the embedding of this sector into the largest half-maximal sector of the \( \mathcal{N} \) = 8 supergravity retaining six vector multiplets. We also provide its canonical \( \mathcal{N} \) = 4 formulation and show that, from this perspective, our model leads in its own right to a new explicit gauging of \( \mathcal{N} \) = 4 supergravity. Finally, expressions for the restricted duality hierarchy are given and the vacuum structure is investigated. Five new non-supersymmetric AdS vacua are found numerically. The previously known \( \mathcal{N} \) = 2 and \( \mathcal{N} \) = 3 AdS vacua are also contained in our \( \mathcal{N} \) = 4 model. Unlike when embedded in previously considered sectors with fewer fields, these vacua exhibit their full \( \mathcal{N} \) = 2 and \( \mathcal{N} \) = 3 supersymmetry within our \( \mathcal{N} \) = 4 model.

Keywords

Extended Supersymmetry Supergravity Models Supersymmetry and Duality AdS-CFT Correspondence 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  2. [2]
    M. Pernici, K. Pilch and P. van Nieuwenhuizen, Gauged Maximally Extended Supergravity in Seven-dimensions, Phys. Lett.143B (1984) 103 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    M. Günaydin, L.J. Romans and N.P. Warner, Gauged N = 8 Supergravity in Five-Dimensions, Phys. Lett.154B (1985) 268 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    B. de Wit and H. Nicolai, N = 8 Supergravity, Nucl. Phys.B 208 (1982) 323 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP10 (2008) 091 [arXiv:0806.1218] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    A. Guarino, D.L. Jafferis and O. Varela, String Theory Origin of Dyonic N = 8 Supergravity and Its Chern-Simons Duals, Phys. Rev. Lett.115 (2015) 091601 [arXiv:1504.08009] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    G. Dall’Agata, G. Inverso and M. Trigiante, Evidence for a family of SO(8) gauged supergravity theories, Phys. Rev. Lett.109 (2012) 201301 [arXiv:1209.0760] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    G. Dall’Agata, G. Inverso and A. Marrani, Symplectic Deformations of Gauged Maximal Supergravity, JHEP07 (2014) 133 [arXiv:1405.2437] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    G. Inverso, Electric-magnetic deformations of D = 4 gauged supergravities, JHEP03 (2016) 138 [arXiv:1512.04500] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    C.M. Hull, A New Gauging of N = 8 Supergravity, Phys. Rev.D 30 (1984) 760 [INSPIRE].ADSMathSciNetGoogle Scholar
  11. [11]
    C.M. Hull and N.P. Warner, Noncompact Gaugings From Higher Dimensions, Class. Quant. Grav.5 (1988) 1517 [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    F. Giani and M. Pernici, N = 2 supergravity in ten-dimensions, Phys. Rev.D 30 (1984) 325 [INSPIRE].ADSMathSciNetGoogle Scholar
  13. [13]
    G. Dall’Agata and G. Inverso, On the Vacua of N = 8 Gauged Supergravity in 4 Dimensions, Nucl. Phys.B 859 (2012) 70 [arXiv:1112.3345] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  14. [14]
    A. Guarino and O. Varela, Dyonic ISO(7) supergravity and the duality hierarchy, JHEP02 (2016) 079 [arXiv:1508.04432] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  15. [15]
    A. Guarino and O. Varela, Consistent \( \mathcal{N} \) = 8 truncation of massive IIA on S 6 , JHEP12 (2015) 020 [arXiv:1509.02526] [INSPIRE].ADSzbMATHGoogle Scholar
  16. [16]
    F. Ciceri, A. Guarino and G. Inverso, The exceptional story of massive IIA supergravity, JHEP08 (2016) 154 [arXiv:1604.08602] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    D. Cassani, O. de Felice, M. Petrini, C. Strickland-Constable and D. Waldram, Exceptional generalised geometry for massive IIA and consistent reductions, JHEP08 (2016) 074 [arXiv:1605.00563] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  18. [18]
    G. Inverso, H. Samtleben and M. Trigiante, Type II supergravity origin of dyonic gaugings, Phys. Rev.D 95 (2017) 066020 [arXiv:1612.05123] [INSPIRE].
  19. [19]
    L.J. Romans, Massive N=2a Supergravity in Ten-Dimensions, Phys. Lett.169B (1986) 374 [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    A. Borghese, A. Guarino and D. Roest, All G 2invariant critical points of maximal supergravity, JHEP12 (2012) 108 [arXiv:1209.3003] [INSPIRE].ADSzbMATHCrossRefMathSciNetGoogle Scholar
  21. [21]
    A. Gallerati, H. Samtleben and M. Trigiante, The \( \mathcal{N} \)> 2 supersymmetric AdS vacua in maximal supergravity, JHEP12 (2014) 174 [arXiv:1410.0711] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    O. Varela, AdS4 solutions of massive IIA from dyonic ISO(7) supergravity, JHEP03 (2016) 071 [arXiv:1509.07117] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    Y. Pang and J. Rong, N = 3 solution in dyonic ISO(7) gauged maximal supergravity and its uplift to massive type IIA supergravity, Phys. Rev.D 92 (2015) 085037 [arXiv:1508.05376] [INSPIRE].
  24. [24]
    G.B. De Luca, G.L. Monaco, N.T. Macpherson, A. Tomasiello and O. Varela, The geometry of \( \mathcal{N} \) = 3 AdS 4in massive IIA, JHEP08 (2018) 133 [arXiv:1805.04823] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  25. [25]
    J.H. Schwarz, Superconformal Chern-Simons theories, JHEP11 (2004) 078 [hep-th/0411077] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    D. Gaiotto and X. Yin, Notes on superconformal Chern-Simons-Matter theories, JHEP08 (2007) 056 [arXiv:0704.3740] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  27. [27]
    A. Guarino, J. Tarrío and O. Varela, Romans-mass-driven flows on the D2-brane, JHEP08 (2016) 168 [arXiv:1605.09254] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  28. [28]
    Y. Pang and J. Rong, Evidence for the Holographic dual of \( \mathcal{N} \) = 3 Solution in Massive Type IIA, Phys. Rev.D 93 (2016) 065038 [arXiv:1511.08223] [INSPIRE].
  29. [29]
    Y. Pang, J. Rong and O. Varela, Spectrum universality properties of holographic Chern-Simons theories, JHEP01 (2018) 061 [arXiv:1711.07781] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  30. [30]
    N. Bobev, P. Bomans and F.F. Gautason, Spherical Branes, JHEP08 (2018) 029 [arXiv:1805.05338] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  31. [31]
    M. Suh, Supersymmetric Janus solutions of dyonic ISO(7)-gauged \( \mathcal{N} \) = 8 supergravity, JHEP04 (2018) 109 [arXiv:1803.00041] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  32. [32]
    A. Guarino and J. Tarrío, BPS black holes from massive IIA on S 6, JHEP09 (2017) 141 [arXiv:1703.10833] [INSPIRE].ADSzbMATHCrossRefMathSciNetGoogle Scholar
  33. [33]
    S.M. Hosseini, K. Hristov and A. Passias, Holographic microstate counting for AdS 4black holes in massive IIA supergravity, JHEP10 (2017) 190 [arXiv:1707.06884] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  34. [34]
    A. Guarino, BPS black hole horizons from massive IIA, JHEP08 (2017) 100 [arXiv:1706.01823] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  35. [35]
    F. Azzurli, N. Bobev, P.M. Crichigno, V.S. Min and A. Zaffaroni, A universal counting of black hole microstates in AdS 4, JHEP02 (2018) 054 [arXiv:1707.04257] [INSPIRE].ADSzbMATHCrossRefMathSciNetGoogle Scholar
  36. [36]
    F. Benini, H. Khachatryan and P. Milan, Black hole entropy in massive Type IIA, Class. Quant. Grav.35 (2018) 035004 [arXiv:1707.06886] [INSPIRE].
  37. [37]
    J.T. Liu, L.A. Pando Zayas and S. Zhou, Subleading Microstate Counting in the Dual to Massive Type IIA, arXiv:1808.10445 [INSPIRE].
  38. [38]
    M. Fluder and J. Sparks, D2-brane Chern-Simons theories: F-maximization = a-maximization, JHEP01 (2016) 048 [arXiv:1507.05817] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  39. [39]
    T.R. Araujo and H. Nastase, Observables in the Guarino-Jafferis-Varela/CS-SYM duality, JHEP07 (2017) 020 [arXiv:1609.08008] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  40. [40]
    T. Araujo, G. Itsios, H. Nastase and E. Ó Colgáin, Penrose limits and spin chains in the GJV/CS-SYM duality, JHEP12 (2017) 137 [arXiv:1706.02711] [INSPIRE].
  41. [41]
    B. de Wit and H. Nicolai, Deformations of gauged SO(8) supergravity and supergravity in eleven dimensions, JHEP05 (2013) 077 [arXiv:1302.6219] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
  42. [42]
    K. Lee, C. Strickland-Constable and D. Waldram, New Gaugings and Non-Geometry, Fortsch. Phys.65 (2017) 1700049 [arXiv:1506.03457] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  43. [43]
    E. Cremmer, B. Julia and J. Scherk, Supergravity Theory in Eleven-Dimensions, Phys. Lett.76B (1978) 409 [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    B. de Wit and H. Nicolai, The Consistency of the S 7Truncation in D = 11 Supergravity, Nucl. Phys.B 281 (1987) 211 [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    S. Minwalla, P. Narayan, T. Sharma, V. Umesh and X. Yin, Supersymmetric States in Large N Chern-Simons-Matter Theories, JHEP02 (2012) 022 [arXiv:1104.0680] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  46. [46]
    B. de Wit, H. Nicolai and H. Samtleben, Gauged Supergravities, Tensor Hierarchies and M-theory, JHEP02 (2008) 044 [arXiv:0801.1294] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  47. [47]
    B. de Wit and H. Samtleben, The end of the p-form hierarchy, JHEP08 (2008) 015 [arXiv:0805.4767] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  48. [48]
    E.A. Bergshoeff, J. Hartong, O. Hohm, M. Huebscher and T. Ortín, Gauge Theories, Duality Relations and the Tensor Hierarchy, JHEP04 (2009) 123 [arXiv:0901.2054] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    H. Kim, N. Kim and M. Suh, On the U(1)2-Invariant Sector of Dyonic Maximal Supergravity, J. Korean Phys. Soc.73 (2018) 249 [arXiv:1801.01286] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    G. Dibitetto, A. Guarino and D. Roest, How to halve maximal supergravity, JHEP06 (2011) 030 [arXiv:1104.3587] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  51. [51]
    J. Schon and M. Weidner, Gauged N = 4 supergravities, JHEP05 (2006) 034 [hep-th/0602024] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  52. [52]
    B. de Wit, H. Samtleben and M. Trigiante, Magnetic charges in local field theory, JHEP09 (2005) 016 [hep-th/0507289] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  53. [53]
    M. de Roo and P. Wagemans, Gauge Matter Coupling in N = 4 Supergravity, Nucl. Phys.B 262 (1985) 644 [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    M. de Roo, D.B. Westra and S. Panda, de Sitter solutions in N = 4 matter coupled supergravity, JHEP02 (2003) 003 [hep-th/0212216] [INSPIRE].
  55. [55]
    M. de Roo, D.B. Westra, S. Panda and M. Trigiante, Potential and mass matrix in gauged N = 4 supergravity, JHEP11 (2003) 022 [hep-th/0310187] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  56. [56]
    M. de Roo, D.B. Westra and S. Panda, Gauging CSO groups in N = 4 Supergravity, JHEP09 (2006) 011 [hep-th/0606282] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  57. [57]
    D. Roest and J. Rosseel, de Sitter in Extended Supergravity, Phys. Lett.B 685 (2010) 201 [arXiv:0912.4440] [INSPIRE].
  58. [58]
    G. Dibitetto, A. Guarino and D. Roest, Charting the landscape of N = 4 flux compactifications, JHEP03 (2011) 137 [arXiv:1102.0239] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  59. [59]
    G. Dibitetto, A. Guarino and D. Roest, Exceptional Flux Compactifications, JHEP05 (2012) 056 [arXiv:1202.0770] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  60. [60]
    A. Guarino, CSO csuperpotentials, Nucl. Phys.B 900 (2015) 501 [arXiv:1508.05055] [INSPIRE].ADSCrossRefMathSciNetzbMATHGoogle Scholar
  61. [61]
    P. Fré’, L. Gualtieri and P. Termonia, The structure of N = 3 multiplets in AdS 4and the complete Osp(3|4)xSU(3) spectrum of M-theory on AdS 4× N 0, 1, 0, Phys. Lett.B 471 (1999) 27 [hep-th/9909188] [INSPIRE].
  62. [62]
    A. Guarino, J. Tarrío and O. Varela, Flowing to \( \mathcal{N} \) = 3 Chern-Simons-matter theory, arXiv:1910.06866 [INSPIRE].
  63. [63]
    H. Lü, C.N. Pope and K.S. Stelle, M theory/heterotic duality: A Kaluza-Klein perspective, Nucl. Phys.B 548 (1999) 87 [hep-th/9810159] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  64. [64]
    B. de Wit, H. Samtleben and M. Trigiante, The maximal D = 4 supergravities, JHEP06 (2007) 049 [arXiv:0705.2101] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Departamento de FísicaUniversidad de OviedoOviedoSpain
  2. 2.Instituto Universitario de Ciencias y Tecnoloǵıas Espaciales de Asturias (ICTEA)OviedoSpain
  3. 3.Department of Physics and Helsinki Institute of PhysicsUniversity of HelsinkiHelsinkiFinland
  4. 4.Department of PhysicsUtah State UniversityLoganU.S.A.
  5. 5.Departamento de Física Teórica and Instituto de Física Teírica UAM/CSICUniversidad Autónoma de MadridMadridSpain

Personalised recommendations