Advertisement

Journal of High Energy Physics

, 2019:133 | Cite as

Model-independent method for measuring the angular coefficients of B0→ D∗−τ+ντ decays

  • Donal HillEmail author
  • Malcolm John
  • Wenqi Ke
  • Anton Poluektov
Open Access
Regular Article - Experimental Physics
  • 19 Downloads

Abstract

Reconstruction of the B0→ D∗−τ+ντ angular distribution is complicated by the strongly biasing effect of losing the neutrino information from both the B and τ decays. In this work, a novel method for making unbiased measurements of the angular coefficients while preserving the model independence of the angular technique is demonstrated. The twelve angular functions that describe the signal decay, in addition to background terms, are modelled in a multidimensional fit, using template probability density functions that encapsulate all resolution and acceptance effects. Sensitivities at the LHCb and Belle II experiments are estimated, and sources of systematic uncertainty are discussed, notably in the extrapolation to a measurement of R(D).

Keywords

B physics Flavor physics Tau Physics Beyond Standard Model Hadron- Hadron scattering (experiments) 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    BaBar collaboration, Evidence for an excess of \( \overline{B} \)→ D ()τ \( \overline{\nu} \) τdecays, Phys. Rev. Lett.109 (2012) 101802 [arXiv:1205.5442] [INSPIRE].
  2. [2]
    BaBar collaboration, Measurement of an excess of \( \overline{B} \)→ D ()τ \( \overline{\nu} \) τdecays and implications for charged Higgs bosons, Phys. Rev.D 88 (2013) 072012 [arXiv:1303.0571] [INSPIRE].
  3. [3]
    Belle collaboration, Measurement of the branching ratio of \( \overline{B} \)→ D ()τ \( \overline{\nu} \) τrelative to \( \overline{B} \)→ D () \( \overline{\nu} \) decays with hadronic tagging at Belle, Phys. Rev.D 92 (2015) 072014 [arXiv:1507.03233] [INSPIRE].
  4. [4]
    Belle collaboration, Measurement of the τ lepton polarization and R(D ) in the decay \( \overline{B} \)→ D τ \( \overline{\nu} \) τ , Phys. Rev. Lett.118 (2017) 211801 [arXiv:1612.00529] [INSPIRE].
  5. [5]
    BELLE collaboration, Measurement of the τ lepton polarization and R(D ) in the decay \( \overline{B} \)→ D τ \( \overline{\nu} \) τwith one-prong hadronic τ decays at Belle, Phys. Rev.D 97 (2018) 012004 [arXiv:1709.00129] [INSPIRE].
  6. [6]
    Belle collaboration, Measurement of ℛ(D) and ℛ(D ) with a semileptonic tagging method, arXiv:1904.08794 [INSPIRE].
  7. [7]
    LHCb collaboration, Measurement of the ratio of branching fractions ℬ (\( \overline{B} \) 0→ D + τ \( \overline{\nu} \) τ)/ ℬ (\( \overline{B} \) 0→ D + μ \( \overline{\nu} \) μ), Phys. Rev. Lett.115 (2015) 111803 [Erratum ibid.115 (2015) 159901] [arXiv:1506.08614] [INSPIRE].
  8. [8]
    LHCb collaboration, Test of lepton flavor universality by the measurement of the B 0→ D ∗−τ +ν τbranching fraction using three-prong τ decays, Phys. Rev.D 97 (2018) 072013 [arXiv:1711.02505] [INSPIRE].
  9. [9]
    HFLAV collaboration, Averages of b-hadron, c-hadron and τ -lepton properties as of summer 2016, Eur. Phys. J.C 77 (2017) 895 [arXiv:1612.07233] [INSPIRE].
  10. [10]
    P. Biancofiore, P. Colangelo and F. De Fazio, On the anomalous enhancement observed in B → D ()τ \( \overline{\nu} \) τdecays, Phys. Rev.D 87 (2013) 074010 [arXiv:1302.1042] [INSPIRE].
  11. [11]
    M. Duraisamy and A. Datta, The Full B → D τ \( \overline{\nu} \) τangular distribution and CP-violating triple products, JHEP09 (2013) 059 [arXiv:1302.7031] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    S. Fajfer, J.F. Kamenik and I. Nisandzic, On the B → D τ \( \overline{\nu} \) τsensitivity to new physics, Phys. Rev.D 85 (2012) 094025 [arXiv:1203.2654] [INSPIRE].
  13. [13]
    M. Tanaka, Charged Higgs effects on exclusive semitauonic B decays, Z. Phys.C 67 (1995) 321 [hep-ph/9411405] [INSPIRE].
  14. [14]
    M. Tanaka and R. Watanabe, τ longitudinal polarization in B → Dτν and its role in the search for charged Higgs boson, Phys. Rev.D 82 (2010) 034027 [arXiv:1005.4306] [INSPIRE].
  15. [15]
    Y. Sakaki and H. Tanaka, Constraints on the charged scalar effects using the forward-backward asymmetry on B → D ()τ ν τ , Phys. Rev.D 87 (2013) 054002 [arXiv:1205.4908] [INSPIRE].
  16. [16]
    A. Datta, M. Duraisamy and D. Ghosh, Diagnosing New Physics in b → cτν τdecays in the light of the recent BaBar result, Phys. Rev.D 86 (2012) 034027 [arXiv:1206.3760] [INSPIRE].
  17. [17]
    M.A. Ivanov, J.G. Körner and C.T. Tran, Exclusive decays B → \( \overline{\nu} \)and B → D () \( \overline{\nu} \)in the covariant quark model, Phys. Rev.D 92 (2015) 114022 [arXiv:1508.02678] [INSPIRE].
  18. [18]
    D. Becirevic, S. Fajfer, I. Nisandzic and A. Tayduganov, Angular distributions of \( \overline{B} \)→ D ()\( \overline{\nu} \) decays and search of New Physics, Nucl. Phys.B 946 (2019) 114707 [arXiv:1602.03030] [INSPIRE].CrossRefGoogle Scholar
  19. [19]
    R. Alonso, A. Kobach and J. Martin Camalich, New physics in the kinematic distributions of \( \overline{B} \)→ D ()τ (\( \overline{\nu} \) ν̄ ν τ ) \( \overline{\nu} \) τ , Phys. Rev.D 94 (2016) 094021 [arXiv:1602.07671] [INSPIRE].
  20. [20]
    A.K. Alok, D. Kumar, S. Kumbhakar and S.U. Sankar, D polarization as a probe to discriminate new physics in \( \overline{B} \)→ D τ \( \overline{\nu} \), Phys. Rev.B 95 (2017) 115038 [arXiv:1606.03164] [INSPIRE].Google Scholar
  21. [21]
    D. Bardhan, P. Byakti and D. Ghosh, A closer look at the RD and RD∗ anomalies, JHEP01 (2017) 125 [arXiv:1610.03038] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    M.A. Ivanov, J.G. Körner and C.-T. Tran, Probing new physics in \( \overline{B} \) 0→ D () τ \( \overline{\nu} \) τusing the longitudinal, transverse and normal polarization components of the tau lepton, Phys. Rev.D 95 (2017) 036021 [arXiv:1701.02937] [INSPIRE].
  23. [23]
    R. Alonso, J. Martin Camalich and S. Westhoff, τ properties in B → Dτν from visible final-state kinematics, Phys. Rev.D 95 (2017) 093006 [arXiv:1702.02773] [INSPIRE].
  24. [24]
    P. Asadi, M.R. Buckley and D. Shih, Asymmetry observables and the origin of R D() anomalies, Phys. Rev.D 99 (2019) 035015 [arXiv:1810.06597] [INSPIRE].
  25. [25]
    P. Colangelo and F. De Fazio, Scrutinizing \( \overline{B} \)→ D () ℓ-\( \overline{\nu} \) and \( \overline{B} \)→ D () ℓ \( \overline{\nu} \) in search of new physics footprints, JHEP06 (2018) 082 [arXiv:1801.10468] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    Belle collaboration, Measurement of the D ∗−polarization in the decay B 0→ D ∗−τ +ν τ , talk given at the 10thInternational Workshop on the CKM Unitarity Triangle (CKM 2018), September 17–21, Heidelberg, Germany (2018), arXiv:1903.03102 [INSPIRE].
  27. [27]
    M. Tanaka and R. Watanabe, New physics in the weak interaction of \( \overline{B} \)→ D () τ \( \overline{\nu} \), Phys. Rev.D 87 (2013) 034028 [arXiv:1212.1878] [INSPIRE].
  28. [28]
    Z.-R. Huang et al., Footprints of new physics in b → cτν transitions, Phys. Rev.D 98 (2018) 095018 [arXiv:1808.03565] [INSPIRE].
  29. [29]
    S. Bhattacharya, S. Nandi and S. Kumar Patra, b → cτν τdecays: a catalogue to compare, constrain and correlate new physics effects, Eur. Phys. J.C 79 (2019) 268 [arXiv:1805.08222] [INSPIRE].
  30. [30]
    D. Bečirević, M. Fedele, I. Nišanďzić and A. Tayduganov, Lepton Flavor Universality tests through angular observables of \( \overline{B} \)→ D ()\( \overline{\nu} \)decay modes, arXiv:1907.02257 [INSPIRE].
  31. [31]
    A.K. Alok et al., New physics in b → sμ +μ : CP-violating observables, JHEP11 (2011) 122 [arXiv:1103.5344] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    LHCb collaboration, Differential branching fraction and angular analysis of the decay B 0→ K 0μ +μ , JHEP08 (2013) 131 [arXiv:1304.6325] [INSPIRE].
  33. [33]
    G.A. Cowan, D.C. Craik and M.D. Needham, RapidSim: an application for the fast simulation of heavy-quark hadron decays, Comput. Phys. Commun.214 (2017) 239 [arXiv:1612.07489] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    R. Brun and F. Rademakers, ROOT: an object oriented data analysis framework, Nucl. Instrum. Meth.A 389 (1997) 81 [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    M. Cacciari, S. Frixione and P. Nason, The p Tspectrum in heavy flavor photoproduction, JHEP03 (2001) 006 [hep-ph/0102134] [INSPIRE].
  36. [36]
    D.J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth.A 462 (2001) 152 [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    N. Isgur, D. Scora, B. Grinstein and M.B. Wise, Semileptonic B and D Decays in the Quark Model, Phys. Rev.D 39 (1989) 799 [INSPIRE].ADSGoogle Scholar
  38. [38]
    M. Chrzaszcz, T. Przedzinski, Z. Was and J. Zaremba, TAUOLA of τ lepton decays — Framework for hadronic currents, matrix elements and anomalous decays, Comput. Phys. Commun.232 (2018) 220 [arXiv:1609.04617] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    Particle Data Group collaboration, Review of particle physics, Phys. Rev.D 98 (2018) 030001 [INSPIRE].
  40. [40]
    A. Poluektov, TensorFlowAnalysis, https://gitlab.cern.ch/poluekt/TensorFlowAnalysis (2019).
  41. [41]
    M. Abadi et al., TensorFlow: large-scale machine learning on heterogeneous systems, http://tensorflow.org/ (2015).
  42. [42]
    F. James and M. Roos, Minuit: a system for function minimization and analysis of the parameter errors and correlations, Comput. Phys. Commun.10 (1975) 343 [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    I. Caprini, L. Lellouch and M. Neubert, Dispersive bounds on the shape of \( \overline{B} \)→ D ()lepton anti-neutrino form-factors, Nucl. Phys.B 530 (1998) 153 [hep-ph/9712417] [INSPIRE].
  44. [44]
    S. Duell et al., HAMMER: reweighting tool for simulated data samples, PoS(ICHEP2016)1074.Google Scholar
  45. [45]
    Z. Ligeti, M. Papucci and D.J. Robinson, New physics in the visible final states of B → D ()τν, JHEP01 (2017) 083 [arXiv:1610.02045] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    F. Pedregosa et al., Scikit-learn: machine learning in Python, J. Mach. Learn. Res.12 (2011) 2825.MathSciNetzbMATHGoogle Scholar
  47. [47]
    LHCb collaboration, Physics case for an LHCb Upgrade II — Opportunities in flavour physics and beyond, in the HL-LHC era, arXiv:1808.08865 [INSPIRE].
  48. [48]
    B. Shwartz, The Belle II experiment, Nucl. Part. Phys. Proc.260 (2015) 233.CrossRefGoogle Scholar
  49. [49]
    Belle-II collaboration, The Belle II physics book, arXiv:1808.10567 [INSPIRE].
  50. [50]
    R.J. Barlow and C. Beeston, Fitting using finite Monte Carlo samples, Comput. Phys. Commun.77 (1993) 219 [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    D. London, CP Violation in \( \overline{B} \) 0→ D + \( \overline{\nu} \) , talk given at the 17thConference on Flavor Physics and CP-violation (FPCP 2019), May 6–10, Victoria, Canada (2019), arXiv:1906.07752 [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Donal Hill
    • 1
    Email author
  • Malcolm John
    • 1
  • Wenqi Ke
    • 2
  • Anton Poluektov
    • 3
  1. 1.Department of PhysicsUniversity of OxfordOxfordU.K.
  2. 2.Département de PhysiqueEćole Normale SupérieureParisFrance
  3. 3.Centre de Physique des Particules de MarseilleAix-Marseille UniversityMarseilleFrance

Personalised recommendations