Advertisement

Journal of High Energy Physics

, 2019:128 | Cite as

Unfolding measurement distributions via quantum annealing

  • Kyle Cormier
  • Riccardo Di SipioEmail author
  • Peter Wittek
Open Access
Regular Article - Experimental Physics

Abstract

High-energy physics is replete with hard computational problems and it is one of the areas where quantum computing could be used to speed up calculations. We present an implementation of likelihood-based regularized unfolding on a quantum computer. The inverse problem is recast in terms of quadratic unconstrained binary optimization (QUBO), which has the same form of the Ising hamiltonian and hence it is solvable on a programmable quantum annealer. We tested the method using a model that captures the essence of the problem, and compared the results with a baseline method commonly used in precision measurements at the Large Hadron Collider (LHC) at CERN. The unfolded distribution is in very good agreement with the original one. We also show how the method can be extended to include the effect of nuisance parameters representing sources of systematic uncertainties affecting the measurement.

Keywords

Unfolding Hadron-Hadron scattering (experiments) 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    A. Di Meglio, M. Girone, A. Purcell and F. Rademakers, CERN openlab whitepaper on future ICT challenges in scientific research, zenodo (2017).Google Scholar
  2. [2]
    J. Preskill, Quantum computing in the NISQ era and beyond, Quantum2 (2018) 79 [arXiv:1801.00862].CrossRefGoogle Scholar
  3. [3]
    A. Mott, J. Job, J.R. Vlimant, D. Lidar and M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning, Nature550 (2017) 375 [INSPIRE].CrossRefADSGoogle Scholar
  4. [4]
    F. Bapst, W. Bhimji, P. Calafiura, H. Gray, W. Lavrijsen and L. Linder, A pattern recognition algorithm for quantum annealers, arXiv:1902.08324 [INSPIRE].
  5. [5]
    C.W. Bauer, B. Nachman, D. Provasoli and W.A. De Jong, A quantum algorithm for high energy physics simulations, arXiv:1904.03196 [INSPIRE].
  6. [6]
    M.W. Johnson et al., Quantum annealing with manufactured spins, Nature473 (2011) 194.CrossRefADSGoogle Scholar
  7. [7]
    S. Tanaka, R. Tamura and B.K. Chakrabarti, Quantum spin glasses, annealing and computation, Cambridge University Press, Cambridge U.K. (2017).zbMATHGoogle Scholar
  8. [8]
    G. Cowan, Statistical data analysis, Oxford University Press, Oxford U.K. (1998).Google Scholar
  9. [9]
    ATLAS collaboration, Measurements of t \( \overline{t} \)differential cross-sections of highly boosted top quarks decaying to all-hadronic final states in pp collisions at \( \sqrt{s} \) = 13 TeV using the ATLAS detector, Phys. Rev.D 98 (2018) 012003 [arXiv:1801.02052] [INSPIRE].
  10. [10]
    CMS collaboration, Measurement of inclusive and differential Higgs boson production cross sections in the diphoton decay channel in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP01 (2019) 183 [arXiv:1807.03825] [INSPIRE].
  11. [11]
    J.A. Hogbom, Aperture Synthesis with a Non-Regular Distribution of Interferometer Baselines, Astron. Astrophys. Suppl. Ser.15 (1974) 417 [INSPIRE].ADSGoogle Scholar
  12. [12]
    GEANT4 collaboration, GEANT4: A Simulation toolkit, Nucl. Instrum. Meth.A 506 (2003) 250 [INSPIRE].
  13. [13]
    G. Battistoni, A. Margiotta, S. Muraro and M. Sioli, FLUKA as a new high energy cosmic ray generator, Nucl. Instrum. Meth.A 626-627 (2011) S191 [arXiv:1002.4655] [INSPIRE].CrossRefADSGoogle Scholar
  14. [14]
    DELPHES 3 collaboration, DELPHES 3, A modular framework for fast simulation of a generic collider experiment, JHEP02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
  15. [15]
    Detector image slightly modified from source, http://www.particleadventure.org/modern_detect.html.
  16. [16]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun.178 (2008) 852 [arXiv:0710.3820] [INSPIRE].
  17. [17]
    J. Bellm et al., HERWIG 7.0/HERWIG++ 3.0 release note, Eur. Phys. J.C 76 (2016) 196 [arXiv:1512.01178] [INSPIRE].
  18. [18]
    S. Schmitt, TUnfold: an algorithm for correcting migration effects in high energy physics, 2012 JINST7 T10003 [arXiv:1205.6201] [INSPIRE].
  19. [19]
    G. D’Agostini, A multidimensional unfolding method based on Bayes’ theorem, Nucl. Instrum. Meth.A 362 (1995) 487 [INSPIRE].CrossRefADSGoogle Scholar
  20. [20]
    G. Choudalakis, Fully Bayesian unfolding, arXiv:1201.4612.
  21. [21]
    D. O’Malley and V. V. Vesselinov, ToQ.jl: A high-level programming language for D-Wave machines based on Julia, IEEE High Perform. Extreme Comput. Conf. (HPEC), 2016 (2016) 1.Google Scholar
  22. [22]
    A. Peruzzo et al., A variational eigenvalue solver on a photonic quantum processor, Nat. Commun.5 (2014) 4213 [arXiv:1304.3061] [INSPIRE].CrossRefADSGoogle Scholar
  23. [23]
    E. Farhi, J. Goldstone and S. Gutmann, A Quantum Approximate Optimization Algorithm, Technical Report, MIT, Cambridge U.S.A. (2014).zbMATHGoogle Scholar
  24. [24]
    QNNCloud, Quantum neural network: Optical neural networks operating at the quantum limit, (2017).Google Scholar
  25. [25]
    V.S. Denchev et al., What is the computational value of finite range tunneling?, Phys. Rev.X 6 (2016) 031015 [arXiv:1512.02206] [INSPIRE].
  26. [26]
    E. Crosson and A.W. Harrow, Simulated Quantum Annealing Can Be Exponentially Faster Than Classical Simulated Annealing, IEEE 57th Ann. Symp. Found. Comput. Sci.2016 (2016) 714.Google Scholar
  27. [27]
    S. Mandrà and H.G. Katzgraber, A deceptive step towards quantum speedup detection, Quant. Sci. Technol.3 (2018) 04LT01 [arXiv:1711.01368] [INSPIRE].
  28. [28]
  29. [29]
    CMS collaboration, Measurement of differential cross sections for the production of top quark pairs and of additional jets in lepton+jets events from pp collisions at \( \sqrt{s} \) = 13 TeV, Phys. Rev.D 97 (2018) 112003 [arXiv:1803.08856] [INSPIRE].
  30. [30]
    PHYSTAT 2011 Workshop on Statistical Issues Related to Discovery Claims in Search Experiments and Unfolding, CERN, Geneva Switzerland (2011).Google Scholar
  31. [31]
    F. Glover, Tabu search — Part I, ORSA J. Comput.1 (1989) 190.CrossRefGoogle Scholar
  32. [32]
    F. Glover, Tabu search — Part II, ORSA J. Comput.2 (1990) 4.CrossRefGoogle Scholar
  33. [33]
    N. Dattani, S. Szalay and N. Chancellor, Pegasus: The second connectivity graph for large-scale quantum annealing hardware, arXiv:1901.07636.
  34. [34]
    A. Gaponenko, A practical way to regularize unfolding of sharply varying spectra with low data statistics, arXiv:1906.07918 [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of TorontoTorontoCanada
  2. 2.Creative Destruction LabTorontoCanada
  3. 3.Vector Institute for Artificial IntelligenceTorontoCanada
  4. 4.Perimeter Institute for Theoretical PhysicsWaterlooCanada

Personalised recommendations