Asymptotic charges, large gauge transformations and inequivalence of different gauges in external current QED
- 12 Downloads
Abstract
In this paper we consider external current QED in the Coulomb gauge and in axial gauges for various spatial directions of the axis. For a non-zero electric charge of the current, we demonstrate that any two different gauges from this class correspond to quantum theories which are not unitarily equivalent. We show that the spacelike asymptotic flux of the electromagnetic field is the underlying superselected quantity. We also express the large gauge transformation linking two distinct axial gauges by the Wilson loop over a contour limited by the two axes. Thus the underlying physical mechanism appears to be related to the Aharonov-Bohm effect.
Keywords
Gauge Symmetry Nonperturbative EffectsNotes
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited
References
- [1]H.-J. Borchers, R. Haag and B. Schroer, The vacuum state in quantum field theory, Nuovo Cim.29 (1963) 148.ADSMathSciNetCrossRefGoogle Scholar
- [2]D. Buchholz, F. Ciolli, G. Ruzzi and E. Vasselli, On string-localized potentials and gauge fields, arXiv:1904.10055 [INSPIRE].
- [3]D. Buchholz, The physical state space of quantum electrodynamics, Commun. Math. Phys.85 (1982) 49 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [4]D. Buchholz and J.E. Roberts, New light on infrared problems: sectors, statistics, symmetries and spectrum, Commun. Math. Phys.330 (2014) 935 [arXiv:1304.2794] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [5]D. Cadamuro and W. Dybalski, Relative normalizers of automorphism groups, infravacua and the problem of velocity superselection in QED, arXiv:1807.07919 [INSPIRE].
- [6]D. Cadamuro and W. Dybalski, Curing velocity superselection in non-relativistic QED by restriction to a lightcone, arXiv:1902.09478 [INSPIRE].
- [7]M. Campiglia and A. Laddha, Asymptotic symmetries of QED and Weinberg’s soft photon theorem, JHEP07 (2015) 115 [arXiv:1505.05346] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [8]M. Campiglia and R. Eyheralde, Asymptotic U(1) charges at spatial infinity, JHEP11 (2017) 168 [arXiv:1703.07884] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [9]D.-A. Deckert, D. Dürr, F. Merkl and M. Schottenloher, Time evolution of the external field problem in QED, J. Math. Phys.51 (2010) 122301 [arXiv:0906.0046] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [10]F. Finster and A. Strohmaier, Gupta-Bleuler quantization of the Maxwell field in globally hyperbolic space-times, Ann. H. Poincaŕe16 (2015) 1837 [Erratum ibid.19 (2018) 323] [arXiv:1307.1632] [INSPIRE].
- [11]B. Gabai and A. Sever, Large gauge symmetries and asymptotic states in QED, JHEP12 (2016) 095 [arXiv:1607.08599] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [12]R. Haag, Local quantum physics, second edition, Springer-Verlag, Berlin, Germany (1996).CrossRefGoogle Scholar
- [13]K. Haller and E. Lim-Lombridas, Quantum gauge equivalence in QED, Found. Phys.24 (1994) 217 [hep-th/9306008] [INSPIRE].ADSCrossRefGoogle Scholar
- [14]T. He, P. Mitra, A.P. Porfyriadis and A. Strominger, New symmetries of massless QED, JHEP10 (2014) 112 [arXiv:1407.3789] [INSPIRE].ADSCrossRefGoogle Scholar
- [15]A. Herdegen, Asymptotic structure of electrodynamics revisited, Lett. Math. Phys.107 (2017) 1439 [arXiv:1604.04170] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [16]R.V. Kadison and J.R. Ringrose, Fundamentals of the theory of operator algebras: advanced theory, Academic Press, U.S.A. (1986).zbMATHGoogle Scholar
- [17]K. Kraus, L. Polley and G. Reents, Models for infrared dynamics. I. Classical currents, Ann. Inst. H. Poincaré26 (1977) 109.Google Scholar
- [18]W. Kunhardt, On infravacua and the localization of sectors, J. Math. Phys.39 (1998) 6353 [math-ph/9806003] [INSPIRE].
- [19]J. Mund, B. Schroer and J. Yngvason, String-localized quantum fields and modular localization, Commun. Math. Phys.268 (2006) 621 [math-ph/0511042] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [20]J. Mund, K.-H. Rehren and B. Schroer, Gauss’ law and string-localized quantum field theory, arXiv:1906.09596 [INSPIRE].
- [21]Y. Nakawaki, A. Tanaka and K. Ozaki, Verification of equivalence of the axial gauge to the Coulomb gauge in QED by embedding in the indefinite metric Hilbert space, Prog. Theor. Phys.91 (1994) 579 [INSPIRE].ADSCrossRefGoogle Scholar
- [22]G. Roepstorff, Coherent photon states and spectral condition, Commun. Math. Phys.19 (1970) 301 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [23]K. Sanders, C. Dappiaggi and T.-P. Hack, Electromagnetism, local covariance, the Aharonov-Bohm effect and Gauss’ law, Commun. Math. Phys.328 (2014) 625 [arXiv:1211.6420] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [24]B. Schroer, The role of positivity and causality in interactions involving higher spin, Nucl. Phys.B 941 (2019) 91 [arXiv:1712.02346] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [25]H. Spohn, Dynamics of charged particles and their radiation fields, Cambridge University Press, Cambridge, U.K. (2004) [INSPIRE].CrossRefGoogle Scholar
- [26]B. Wegener, The problem of inequivalence of different gauges in external current QED, MSc thesis, Technische Universität München/Ludwig-Maximilians-Universität München, Munich, Germany (2018).Google Scholar
- [27]S. Weinberg, The quantum theory of fields: volume 1, foundations, Cambridge University Press, Cambridge, U.K. (1995) [INSPIRE].CrossRefGoogle Scholar