Advertisement

Journal of High Energy Physics

, 2019:126 | Cite as

Asymptotic charges, large gauge transformations and inequivalence of different gauges in external current QED

  • Wojciech DybalskiEmail author
  • Benedikt Wegener
Open Access
Regular Article - Theoretical Physics
  • 12 Downloads

Abstract

In this paper we consider external current QED in the Coulomb gauge and in axial gauges for various spatial directions of the axis. For a non-zero electric charge of the current, we demonstrate that any two different gauges from this class correspond to quantum theories which are not unitarily equivalent. We show that the spacelike asymptotic flux of the electromagnetic field is the underlying superselected quantity. We also express the large gauge transformation linking two distinct axial gauges by the Wilson loop over a contour limited by the two axes. Thus the underlying physical mechanism appears to be related to the Aharonov-Bohm effect.

Keywords

Gauge Symmetry Nonperturbative Effects 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    H.-J. Borchers, R. Haag and B. Schroer, The vacuum state in quantum field theory, Nuovo Cim.29 (1963) 148.ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    D. Buchholz, F. Ciolli, G. Ruzzi and E. Vasselli, On string-localized potentials and gauge fields, arXiv:1904.10055 [INSPIRE].
  3. [3]
    D. Buchholz, The physical state space of quantum electrodynamics, Commun. Math. Phys.85 (1982) 49 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    D. Buchholz and J.E. Roberts, New light on infrared problems: sectors, statistics, symmetries and spectrum, Commun. Math. Phys.330 (2014) 935 [arXiv:1304.2794] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    D. Cadamuro and W. Dybalski, Relative normalizers of automorphism groups, infravacua and the problem of velocity superselection in QED, arXiv:1807.07919 [INSPIRE].
  6. [6]
    D. Cadamuro and W. Dybalski, Curing velocity superselection in non-relativistic QED by restriction to a lightcone, arXiv:1902.09478 [INSPIRE].
  7. [7]
    M. Campiglia and A. Laddha, Asymptotic symmetries of QED and Weinberg’s soft photon theorem, JHEP07 (2015) 115 [arXiv:1505.05346] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    M. Campiglia and R. Eyheralde, Asymptotic U(1) charges at spatial infinity, JHEP11 (2017) 168 [arXiv:1703.07884] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    D.-A. Deckert, D. Dürr, F. Merkl and M. Schottenloher, Time evolution of the external field problem in QED, J. Math. Phys.51 (2010) 122301 [arXiv:0906.0046] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    F. Finster and A. Strohmaier, Gupta-Bleuler quantization of the Maxwell field in globally hyperbolic space-times, Ann. H. Poincaŕe16 (2015) 1837 [Erratum ibid.19 (2018) 323] [arXiv:1307.1632] [INSPIRE].
  11. [11]
    B. Gabai and A. Sever, Large gauge symmetries and asymptotic states in QED, JHEP12 (2016) 095 [arXiv:1607.08599] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    R. Haag, Local quantum physics, second edition, Springer-Verlag, Berlin, Germany (1996).CrossRefGoogle Scholar
  13. [13]
    K. Haller and E. Lim-Lombridas, Quantum gauge equivalence in QED, Found. Phys.24 (1994) 217 [hep-th/9306008] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    T. He, P. Mitra, A.P. Porfyriadis and A. Strominger, New symmetries of massless QED, JHEP10 (2014) 112 [arXiv:1407.3789] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    A. Herdegen, Asymptotic structure of electrodynamics revisited, Lett. Math. Phys.107 (2017) 1439 [arXiv:1604.04170] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    R.V. Kadison and J.R. Ringrose, Fundamentals of the theory of operator algebras: advanced theory, Academic Press, U.S.A. (1986).zbMATHGoogle Scholar
  17. [17]
    K. Kraus, L. Polley and G. Reents, Models for infrared dynamics. I. Classical currents, Ann. Inst. H. Poincaré26 (1977) 109.Google Scholar
  18. [18]
    W. Kunhardt, On infravacua and the localization of sectors, J. Math. Phys.39 (1998) 6353 [math-ph/9806003] [INSPIRE].
  19. [19]
    J. Mund, B. Schroer and J. Yngvason, String-localized quantum fields and modular localization, Commun. Math. Phys.268 (2006) 621 [math-ph/0511042] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    J. Mund, K.-H. Rehren and B. Schroer, Gauss’ law and string-localized quantum field theory, arXiv:1906.09596 [INSPIRE].
  21. [21]
    Y. Nakawaki, A. Tanaka and K. Ozaki, Verification of equivalence of the axial gauge to the Coulomb gauge in QED by embedding in the indefinite metric Hilbert space, Prog. Theor. Phys.91 (1994) 579 [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    G. Roepstorff, Coherent photon states and spectral condition, Commun. Math. Phys.19 (1970) 301 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    K. Sanders, C. Dappiaggi and T.-P. Hack, Electromagnetism, local covariance, the Aharonov-Bohm effect and Gauss’ law, Commun. Math. Phys.328 (2014) 625 [arXiv:1211.6420] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    B. Schroer, The role of positivity and causality in interactions involving higher spin, Nucl. Phys.B 941 (2019) 91 [arXiv:1712.02346] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    H. Spohn, Dynamics of charged particles and their radiation fields, Cambridge University Press, Cambridge, U.K. (2004) [INSPIRE].CrossRefGoogle Scholar
  26. [26]
    B. Wegener, The problem of inequivalence of different gauges in external current QED, MSc thesis, Technische Universität München/Ludwig-Maximilians-Universität München, Munich, Germany (2018).Google Scholar
  27. [27]
    S. Weinberg, The quantum theory of fields: volume 1, foundations, Cambridge University Press, Cambridge, U.K. (1995) [INSPIRE].CrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Zentrum MathematikTechnische Universität MünchenMunichGermany
  2. 2.Dipartimento di MatematicaUniversità di Roma “Tor Vergata”RomeItaly

Personalised recommendations