Advertisement

Journal of High Energy Physics

, 2019:115 | Cite as

The uniqueness of hypergravity

  • Rakibur RahmanEmail author
Open Access
Regular Article - Theoretical Physics
  • 456 Downloads

Abstract

We show that consistent interactions of a spin-2 and a higher-spin Majorana fermion gauge fields in 30 fiat space lead uniquely to Aragone-Deser hypergravity or its generalization. Our analysis employs the ERST-cohomological techniques, and works in the metric-like formulation under the assumptions of locality, parity and Poincaré invariance. Local hypersymmetry shows up as the unique consistent deformation of the gauge transformations. An extension of the theory with fermion flavors does not change these features, while a cosmological deformation becomes obstructed unless we allow for some new degrees of freedom and/or non-locality.

Keywords

Field Theories in Lower Dimensions Gauge Symmetry Higher Spin Gravity Higher Spin Symmetry 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    S. Weinberg, Photons and gravitons in S matrix theory: derivation of charge conservation and equality of gravitational and inertial mass, Phys. Rev.135 (1964) B1049 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    M.T. Grisaru and H.N. Pendleton, Soft spin 3/ 2 fermions require gravity and supersymmetry, Phys. Lett.B 67 (1977) 323 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    M.T. Grisaru, H.N. Pendleton and P. van Nieuwenhuizen, Supergravity and the S matrix, Phys. Rev.D 15 (1977) 996 [INSPIRE].ADSGoogle Scholar
  4. [4]
    C. Aragone and S. Deser, Consistency problems of hypergravity, Phys. Lett.B 86 (1979) 161 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    S. Deser and Z. Yang, Inconsistency of spin 4-spin 2 gauge field couplings, Class. Quant. Grav.7 (1990) 1491 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    S. Weinberg and E. Witten, Limits on massless particles, Phys. Lett.B 96 (1980) 59 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    M. Porrati, Universal limits on massless high-spin particles, Phys. Rev.D 78 (2008) 065016 [arXiv:0804.4672] [INSPIRE].
  8. [8]
    C. Aragone and S. Deser, Hypersymmetry in D = 3 of coupled gravity massless spin 5/2 system, Class. Quant. Grav.1 (1984) 19 [INSPIRE].MathSciNetGoogle Scholar
  9. [9]
    R. Haag, J.T. Lopuszanski and M. Sohnius, All possible generators of supersymmetries of the S matrix, Nucl. Phys.B 88 (1975) 257 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    O. Fuentealba, J. Matulich and R. Troncoso, Extension of the Poincaré group with half-integer spin generators: hypergravity and beyond, JHEP09 (2015) 003 [arXiv:1505.06173] [INSPIRE].
  11. [11]
    G. Barnich and M. Henneaux, Consistent couplings between fields with a gauge freedom and deformations of the master equation, Phys. Lett.B 311 (1993) 123 [hep-th/9304057] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    M. Henneaux, Consistent interactions between gauge fields: the cohomological approach, Contemp. Math.219 (1998) 93 [hep-th/9712226] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    G. Barnich, M. Henneaux and R. Tatar, Consistent interactions between gauge fields and the local ERST cohomology: the example of Yang-Mills models, Int. J. Mod. Phys.D 3 (1994) 139 [hep-th/9307155] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    N. Boulanger, T. Damour, L. Gualtieri and M. Henneaux, Inconsistency of interacting, multigraviton theories, Nucl. Phys.B 597 (2001) 127 [hep-th/0007220] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    N. Boulanger and M. Esole, A note on the uniqueness of D = 4, N = 1 supergravity, Class. Quant. Grav.19 (2002) 2107 [gr-qc/0110072] [INSPIRE].
  16. [16]
    N. Boulanger, B. Julia and L. Traina, Uniqueness of N = 2 and 3 pure supergravitie s in 4D, JHEP04 (2018) 097 [arXiv:1802.02966] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    D.Z. Freedman and A. Van Proeyen, Supergravity, Cambridge Univ. Press, Cambridge, U.K. (2012).Google Scholar
  18. [18]
    M.A. Vasiliev, 'Gauge' form of description of massless fields with arbitrary spin (in Russian), Yad. Fiz.32 (1980) 855 [Sov. J. Nucl. Phys.32 (1980) 439] [INSPIRE].
  19. [19]
    C. Aragone and S. Deser, Higher spin vierbein gauge fermions and hypergravities, Nucl. Phys.B 170 (1980) 329 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    R. Rahman, Frame- and metric-like higher-spin fermions, Universe4 (2018) 34 [arXiv:1712.09264] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    R. Rahman and M. Taronna, From higher spins to strings: a primer, arXiv:1512.07932 [INSPIRE].
  22. [22]
    M. Henneaux, G. Lucena Gomez and R. Rahman, Higher-spin fermionic gauge fields and their electromagnetic coupling, JHEP08 (2012) 093 [arXiv:1206.1048] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    M. Henneaux, G. Lucena Gomez and R. Rahman, Gravitational interactions of higher-spin fermions, JHEP01 (2014) 087 [arXiv:1310.5152] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    N. Boulanger, S. Leclercq and P. Sundell, On the uniquene ss of minimal coupling in higher-spin gauge theory, JHEP08 (2008) 056 [arXiv:0805.2764] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    G. Barnich, F. Brandt and M. Henneaux, Local ERST cohomology in the antifield formalism. I. General theorems, Commun. Math. Phys.174 (1995) 57 [hep-th/9405109] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    G. Barnich, F. Brandt and M. Henneaux, Local ERST cohomology in the antifield formalism. II. Application to Yang-Mills theory, Commun. Math. Phys.174 (1995) 93 [hep-th/9405194] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    G. Barnich, F. Brandt and M. Henneaux, Conserved currents and gauge invariance in Yang-Mills theory, Phys. Lett.B 346 (1995) 81 [hep-th/9411202] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    G. Barnich, F. Brandt and M. Henneaux, Local ERST cohomology in gauge theories, Phys. Rept.338 (2000) 439 [hep-th/0002245] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    K. Mkrtchyan, Cubic interactions of massless bosonic fields in three dimensions, Phys. Rev. Lett.120 (2018) 221601 [arXiv:1712.10003] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    O. Fuentealba, J. Matulich and R. Troncoso, Asymptotically fiat structure of hypergravity in three spacetime dimensions, JHEP10 (2015) 009 [arXiv:1508.04663] [INSPIRE].
  31. [31]
    P. Kessel and K. Mkrtchyan, Cubic interactions of massless bosonic fields in three dimensions II: parity-odd and Chern-Simons vertices, Phys. Rev.D 97 (2018) 106021 [arXiv:1803.02737] [INSPIRE].ADSMathSciNetGoogle Scholar
  32. [32]
    A. Achucarro and P.K. Townsend, A Chern-Simons action for three-dimensional anti-de Sitter supergravity theories, Phys. Lett.B 180 (1986) 89 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    S. Gwak, E. Joung, K. Mkrtchyan and S.-J. Rey, Rainbow valley of colored (anti) de Sitter gravity in three dimensions, JHEP04 (2016) 055 [arXiv:1511.05220] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  34. [34]
    S. Gwak, E. Joung, K. Mkrtchyan and S.-J. Rey, Rainbow vacua of colored higher-spin (A)dS 3gravity, JHEP 05 (2016) 150 [arXiv:1511.05975] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    Yu. M. Zinoviev, Hypergravity in AdS 3, Phys. Lett.B 739 (2014) 106 [arXiv:1408.2912] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    M. Henneaux, A. Perez, D. Tempo and R. Troncoso, Hypersymmetry bounds and three-dimensional higher-spin black holes, JHEP08 (2015) 021 [arXiv:1506.01847] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    S.M. Kuzenko, U. Lindstrom and G. Tartaglino-Mazzucchelli, Off-shell supergravity-matter couplings in three dimensions, JHEP03 (2011) 120 [arXiv:1101.4013] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    S. Bansal and D. Sorokin, Can Chern-Simons or Rarita-Schwinger be a Volkov-Akulov Goldstone?, JHEP07 (2018) 106 [arXiv:1806.05945] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of DhakaDhakaBangladesh
  2. 2.Max-Planck-Institut für Gravitationsphysik ( Albert-Einstein-Institut)Potsdam-CalmGermany

Personalised recommendations