Journal of High Energy Physics

, 2019:102 | Cite as

Reparametrization modes, shadow operators, and quantum chaos in higher-dimensional CFTs

  • Felix M. HaehlEmail author
  • Wyatt Reeves
  • Moshe Rozali
Open Access
Regular Article - Theoretical Physics


We study two novel approaches to efficiently encoding universal constraints imposed by conformal symmetry, and describe applications to quantum chaos in higher dimensional CFTs. The first approach consists of a reformulation of the shadow operator formalism and kinematic space techniques. We observe that the shadow operator associated with the stress tensor (or other conserved currents) can be written as the descendant of a field ε with negative dimension. Computations of stress tensor contributions to conformal blocks can be systematically organized in terms of the “soft mode” ε, turning them into a simple diagrammatic perturbation theory at large central charge.

Our second (equivalent) approach concerns a theory of reparametrization modes, generalizing previous studies in the context of the Schwarzian theory and two-dimensional CFTs. Due to the conformal anomaly in even dimensions, gauge modes of the conformal group acquire an action and are shown to exhibit the same dynamics as the soft mode ε that encodes the physics of the stress tensor shadow. We discuss the calculation of the conformal partial waves or the conformal blocks using our effective field theory. The separation of conformal blocks from shadow blocks is related to gauging of certain symmetries in our effective field theory of the soft mode.

These connections explain and generalize various relations between conformal blocks, shadow operators, kinematic space, and reparametrization modes. As an application we study thermal physics in higher dimensions and argue that the theory of reparametrization modes captures the physics of quantum chaos in Rindler space. This is also supported by the observation of the pole skipping phenomenon in the conformal energy-energy two-point function on Rindler space.


Conformal Field Theory 1/N Expansion Field Theories in Higher Dimensions AdS-CFT Correspondence 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    A.I. Larkin and Y.N. Ovchinnikov, Quasiclassical method in the theory of superconductivity, Sov. Phys. JETP28 (1969) 1200.ADSGoogle Scholar
  2. [2]
    S.H. Shenker and D. Stanford, Black holes and the butterfly effect, JHEP03 (2014) 067 [arXiv:1306.0622] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    S.H. Shenker and D. Stanford, Multiple Shocks, JHEP12 (2014) 046 [arXiv:1312.3296] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  4. [4]
    S. Leichenauer, Disrupting Entanglement of Black Holes, Phys. Rev.D 90 (2014) 046009 [arXiv:1405.7365] [INSPIRE].
  5. [5]
    J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, JHEP08 (2016) 106 [arXiv:1503.01409] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    A. Kitaev, A simple model of quantum holography (part 1), talk at KITP, April 7, 2015,
  7. [7]
    A. Kitaev, A simple model of quantum holography (part 2), talk at KITP, May 27, 2015,
  8. [8]
    P. Hayden and J. Preskill, Black holes as mirrors: Quantum information in random subsystems, JHEP09 (2007) 120 [arXiv:0708.4025] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    Y. Sekino and L. Susskind, Fast Scramblers, JHEP10 (2008) 065 [arXiv:0808.2096] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    N. Lashkari, D. Stanford, M. Hastings, T. Osborne and P. Hayden, Towards the Fast Scrambling Conjecture, JHEP04 (2013) 022 [arXiv:1111.6580] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev.D 94 (2016) 106002 [arXiv:1604.07818] [INSPIRE].
  12. [12]
    A. Almheiri and J. Polchinski, Models of AdS 2backreaction and holography, JHEP11 (2015) 014 [arXiv:1402.6334] [INSPIRE].CrossRefADSzbMATHGoogle Scholar
  13. [13]
    J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two dimensional Nearly Anti-de-Sitter space, PTEP2016 (2016) 12C104 [arXiv:1606.01857] [INSPIRE].
  14. [14]
    K. Jensen, Chaos in AdS 2Holography, Phys. Rev. Lett.117 (2016) 111601 [arXiv:1605.06098] [INSPIRE].CrossRefADSGoogle Scholar
  15. [15]
    M. Blake, H. Lee and H. Liu, A quantum hydrodynamical description for scrambling and many-body chaos, JHEP10 (2018) 127 [arXiv:1801.00010] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  16. [16]
    J. Cotler and K. Jensen, A theory of reparameterizations for AdS 3gravity, JHEP02 (2019) 079 [arXiv:1808.03263] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  17. [17]
    K. Jensen, Scrambling in nearly thermalized states at large central charge, arXiv:1906.05852 [INSPIRE].
  18. [18]
    G. Turiaci and H. Verlinde, On CFT and Quantum Chaos, JHEP12 (2016) 110 [arXiv:1603.03020] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  19. [19]
    F.M. Haehl and M. Rozali, Effective Field Theory for Chaotic CFTs, JHEP10 (2018) 118 [arXiv:1808.02898] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  20. [20]
    F.A. Dolan and H. Osborn, Conformal Partial Waves: Further Mathematical Results, arXiv:1108.6194 [INSPIRE].
  21. [21]
    D. Simmons-Duffin, Projectors, Shadows and Conformal Blocks, JHEP04 (2014) 146 [arXiv:1204.3894] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  22. [22]
    A. Alekseev and S.L. Shatashvili, Path Integral Quantization of the Coadjoint Orbits of the Virasoro Group and 2D Gravity, Nucl. Phys.B 323 (1989) 719 [INSPIRE].
  23. [23]
    B. Czech, L. Lamprou, S. McCandlish, B. Mosk and J. Sully, A Stereoscopic Look into the Bulk, JHEP07 (2016) 129 [arXiv:1604.03110] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  24. [24]
    J. de Boer, F.M. Haehl, M.P. Heller and R.C. Myers, Entanglement, holography and causal diamonds, JHEP08 (2016) 162 [arXiv:1606.03307] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  25. [25]
    E.S. Fradkin and M.Ya. Palchik, New developments in D-dimensional conformal quantum field theory, Phys. Rept.300 (1998) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    V. Gurarie, Logarithmic operators in conformal field theory, Nucl. Phys.B 410 (1993) 535 [hep-th/9303160] [INSPIRE].
  27. [27]
    M.R. Gaberdiel, An Algebraic approach to logarithmic conformal field theory, Int. J. Mod. Phys.A 18 (2003) 4593 [hep-th/0111260] [INSPIRE].
  28. [28]
    M. Flohr, Bits and pieces in logarithmic conformal field theory, Int. J. Mod. Phys.A 18 (2003) 4497 [hep-th/0111228] [INSPIRE].
  29. [29]
    H. Osborn, Lectures on Conformal Field Theories in more than two dimensions, (2018), .
  30. [30]
    F.A. Dolan and H. Osborn, Conformal partial waves and the operator product expansion, Nucl. Phys.B 678 (2004) 491 [hep-th/0309180] [INSPIRE].
  31. [31]
    E.S. Fradkin and M.Y. Palchik, Conformal quantum field theory in D-dimensions, Springer Netherlands, (1996) [].
  32. [32]
    A. Bzowski, P. McFadden and K. Skenderis, Implications of conformal invariance in momentum space, JHEP03 (2014) 111 [arXiv:1304.7760] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  33. [33]
    D.Z. Freedman, K. Johnson and J.I. Latorre, Differential regularization and renormalization: A New method of calculation in quantum field theory, Nucl. Phys.B 371 (1992) 353 [INSPIRE].
  34. [34]
    J.I. Latorre, C. Manuel and X. Vilasis-Cardona, Systematic differential renormalization to all orders, Annals Phys.231 (1994) 149 [hep-th/9303044] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    A.L. Fitzpatrick, J. Kaplan and M.T. Walters, Universality of Long-Distance AdS Physics from the CFT Bootstrap, JHEP08 (2014) 145 [arXiv:1403.6829] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    H. Maxfield, A view of the bulk from the worldline, arXiv:1712.00885 [INSPIRE].
  37. [37]
    A.L. Fitzpatrick and K.-W. Huang, Universal Lowest-Twist in CFTs from Holography, JHEP08 (2019) 138 [arXiv:1903.05306] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  38. [38]
    A.L. Fitzpatrick, K.-W. Huang and D. Li, Probing Universalities in d > 2 CFTs: from Black Holes to Shockwaves, arXiv:1907.10810 [INSPIRE].
  39. [39]
    M. Kulaxizi, G.S. Ng and A. Parnachev, Subleading Eikonal, AdS/CFT and Double Stress Tensors, JHEP10 (2019) 107 [arXiv:1907.00867] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    K.-W. Huang, Stress-tensor commutators in conformal field theories near the lightcone, Phys. Rev.D 100 (2019) 061701 [arXiv:1907.00599] [INSPIRE].
  41. [41]
    A.L. Fitzpatrick and J. Kaplan, Analyticity and the Holographic S-matrix, JHEP10 (2012) 127 [arXiv:1111.6972] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  42. [42]
    C. Cardona, S. Guha, S.K. KaNuMIlli and K. Sen, Resummation at finite conformal spin, JHEP01 (2019) 077 [arXiv:1811.00213] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  43. [43]
    A.L. Fitzpatrick, J. Kaplan and M.T. Walters, Virasoro Conformal Blocks and Thermality from Classical Background Fields, JHEP11 (2015) 200 [arXiv:1501.05315] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  44. [44]
    A.L. Fitzpatrick and J. Kaplan, Conformal Blocks Beyond the Semi-Classical Limit, JHEP05 (2016) 075 [arXiv:1512.03052] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  45. [45]
    D.A. Roberts and D. Stanford, Two-dimensional conformal field theory and the butterfly effect, Phys. Rev. Lett.115 (2015) 131603 [arXiv:1412.5123] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    A.L. Fitzpatrick and J. Kaplan, A Quantum Correction To Chaos, JHEP05 (2016) 070 [arXiv:1601.06164] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  47. [47]
    T. Anous and J. Sonner, Phases of scrambling in eigenstates, SciPost Phys.7 (2019) 003 [arXiv:1903.03143] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    F.M. Haehl, R. Loganayagam, P. Narayan and M. Rangamani, Classification of out-of-time-order correlators, SciPost Phys.6 (2019) 001 [arXiv:1701.02820] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    F.M. Haehl and M. Rozali, Fine Grained Chaos in AdS 2Gravity, Phys. Rev. Lett.120 (2018) 121601 [arXiv:1712.04963] [INSPIRE].CrossRefADSGoogle Scholar
  50. [50]
    H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP05 (2011) 036 [arXiv:1102.0440] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  51. [51]
    E. Perlmutter, Bounding the Space of Holographic CFTs with Chaos, JHEP10 (2016) 069 [arXiv:1602.08272] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  52. [52]
    Y. Ahn, V. Jahnke, H.-S. Jeong and K.-Y. Kim, Scrambling in Hyperbolic Black Holes: shock waves and pole-skipping, JHEP10 (2019) 257 [arXiv:1907.08030] [INSPIRE].CrossRefGoogle Scholar
  53. [53]
    S.H. Shenker and D. Stanford, Stringy effects in scrambling, JHEP05 (2015) 132 [arXiv:1412.6087] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  54. [54]
    M. Mezei and G. Sárosi, Chaos in the butterfly cone, arXiv:1908.03574 [INSPIRE].
  55. [55]
    S. Grozdanov, K. Schalm and V. Scopelliti, Black hole scrambling from hydrodynamics, Phys. Rev. Lett.120 (2018) 231601 [arXiv:1710.00921] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    M. Blake, R.A. Davison, S. Grozdanov and H. Liu, Many-body chaos and energy dynamics in holography, JHEP10 (2018) 035 [arXiv:1809.01169] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  57. [57]
    S. Grozdanov, On the connection between hydrodynamics and quantum chaos in holographic theories with stringy corrections, JHEP01 (2019) 048 [arXiv:1811.09641] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  58. [58]
    S. Grozdanov, P.K. Kovtun, A.O. Starinets and P. Tadíc, The complex life of hydrodynamic modes, arXiv:1904.12862 [INSPIRE].
  59. [59]
    M. Blake, R.A. Davison and D. Vegh, Horizon constraints on holographic Green’s functions, arXiv:1904.12883 [INSPIRE].
  60. [60]
    M.S. Costa, V. Gon¸calves and J. Penedones, Spinning AdS Propagators, JHEP09 (2014) 064 [arXiv:1404.5625] [INSPIRE].
  61. [61]
    T. Faulkner, R.G. Leigh and O. Parrikar, Shape Dependence of Entanglement Entropy in Conformal Field Theories, JHEP04 (2016) 088 [arXiv:1511.05179] [INSPIRE].
  62. [62]
    S. Ohya, Intertwining operator in thermal CFT d, Int. J. Mod. Phys.A 32 (2017) 1750006 [arXiv:1611.00763] [INSPIRE].
  63. [63]
    S. Das, B. Ezhuthachan and A. Kundu, Real Time Dynamics in Low Point Correlators in 2d BCFT, arXiv:1907.08763 [INSPIRE].
  64. [64]
    R.F. Penna and C. Zukowski, Kinematic space and the orbit method, JHEP07 (2019) 045 [arXiv:1812.02176] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  65. [65]
    N. Callebaut, The gravitational dynamics of kinematic space, JHEP02 (2019) 153 [arXiv:1808.10431] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  66. [66]
    N. Callebaut and H. Verlinde, Entanglement Dynamics in 2D CFT with Boundary: Entropic origin of JT gravity and Schwarzian QM, JHEP05 (2019) 045 [arXiv:1808.05583] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  67. [67]
    P. Kraus, A. Sivaramakrishnan and R. Snively, Late time Wilson lines, JHEP04 (2019) 026 [arXiv:1810.01439] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  68. [68]
    Y. Kusuki and M. Miyaji, Entanglement Entropy, OTOC and Bootstrap in 2D CFTs from Regge and Light Cone Limits of Multi-point Conformal Block, JHEP08 (2019) 063 [arXiv:1905.02191] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  69. [69]
    V. Rosenhaus, Multipoint Conformal Blocks in the Comb Channel, JHEP02 (2019) 142 [arXiv:1810.03244] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  70. [70]
    T. Anous, F. Haehl and E. Perlmutter, work in progress.Google Scholar
  71. [71]
    I.S. Gradshteyn and I.M. Ryzhik, Table of integrals, series, and products, seventh edition, Elsevier/Academic Press, Amsterdam, The Netherlands, (2007).Google Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.School of Natural Sciences, Institute for Advanced StudyPrincetonU.S.A.
  2. 2.Department of Physics and AstronomyUniversity of British ColumbiaVancouverCanada

Personalised recommendations