Advertisement

Journal of High Energy Physics

, 2019:101 | Cite as

Behaviors of two supersymmetry breaking scales in \( \mathcal{N} \) = 2 supergravity

  • Hiroyuki Abe
  • Shuntaro AokiEmail author
  • Sosuke Imai
  • Yutaka Sakamura
Open Access
Regular Article - Theoretical Physics
  • 17 Downloads

Abstract

We study the supersymmetry breaking patterns in four-dimensional \( \mathcal{N} \) = 2 gauged supergravity. The model contains multiple (Abelian) vector multiplets and a single hypermultiplet which parametrizes SO(4, 1)/SO(4) coset. We derive the expressions of two gravitino masses under general gaugings and prepotential based on the embedding tensor formalism, and discuss their behaviors in some concrete models. Then we confirm that in a single vector multiplet case, the partial breaking always occurs when the third derivative of the prepotential exists at the vacuum, which is consistent with the result of ref. [1], but we can have several breaking patterns otherwise. The discussion is also generalized to the case of multiple vector multiplets, and we found that the full (\( \mathcal{N} \) = 0) breaking occurs even if the third derivative of the prepotential is nontrivial.

Keywords

Extended Supersymmetry Supergravity Models Supersymmetry Breaking 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    I. Antoniadis, J.-P. Derendinger, P.M. Petropoulos and K. Siampos, All partial breakings in \( \mathcal{N} \) = 2 supergravity with a single hypermultiplet, JHEP08 (2018) 045 [arXiv:1806.09639] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  2. [2]
    M. Graña, Flux compactifications in string theory: A Comprehensive review, Phys. Rept.423 (2006) 91 [hep-th/0509003] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    R. Blumenhagen, B. Körs, D. Lüst and S. Stieberger, Four-dimensional String Compactifications with D-branes, Orientifolds and Fluxes, Phys. Rept.445 (2007) 1 [hep-th/0610327] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    S. Ferrara, L. Girardello and M. Porrati, Minimal Higgs branch for the breaking of half of the supersymmetries in N = 2 supergravity, Phys. Lett.B 366 (1996) 155 [hep-th/9510074] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    S. Ferrara, L. Girardello and M. Porrati, Spontaneous breaking of N = 2 to N = 1 in rigid and local supersymmetric theories, Phys. Lett.B 376 (1996) 275 [hep-th/9512180] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    P. Fré, L. Girardello, I. Pesando and M. Trigiante, Spontaneous N = 2 → N = 1 local supersymmetry breaking with surviving compact gauge group, Nucl. Phys.B 493 (1997) 231 [hep-th/9607032] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    H. Itoyama and K. Maruyoshi, U(N) gauged N = 2 supergravity and partial breaking of local N = 2 supersymmetry, Int. J. Mod. Phys.A 21 (2006) 6191 [hep-th/0603180] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    K. Maruyoshi, Gauged N = 2 Supergravity and Partial Breaking of Extended Supersymmetry, Ph.D. Thesis, Osaka City U. (2006) [hep-th/0607047] [INSPIRE].
  9. [9]
    J. Louis, P. Smyth and H. Triendl, Spontaneous N = 2 to N = 1 Supersymmetry Breaking in Supergravity and Type II String Theory, JHEP02 (2010) 103 [arXiv:0911.5077] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    J. Louis, P. Smyth and H. Triendl, The N = 1 Low-Energy Effective Action of Spontaneously Broken N = 2 Supergravities, JHEP10 (2010) 017 [arXiv:1008.1214] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    T. Hansen and J. Louis, Examples of \( \mathcal{N} \) = 2 to \( \mathcal{N} \) = 1 supersymmetry breaking, JHEP11 (2013) 075 [arXiv:1306.5994] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    J. Hughes and J. Polchinski, Partially Broken Global Supersymmetry and the Superstring, Nucl. Phys.B 278 (1986) 147 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    I. Antoniadis, H. Partouche and T.R. Taylor, Spontaneous breaking of N = 2 global supersymmetry, Phys. Lett.B 372 (1996) 83 [hep-th/9512006] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  14. [14]
    K. Fujiwara, H. Itoyama and M. Sakaguchi, Partial breaking of N = 2 supersymmetry and of gauge symmetry in the U(N ) gauge model, Nucl. Phys.B 723 (2005) 33 [hep-th/0503113] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  15. [15]
    K. Fujiwara, H. Itoyama and M. Sakaguchi, Partial supersymmetry breaking and N = 2 U(N c) gauge model with hypermultiplets in harmonic superspace, Nucl. Phys.B 740 (2006) 58 [hep-th/0510255] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  16. [16]
    K. Fujiwara, H. Itoyama and M. Sakaguchi, Supersymmetric U(N ) gauge model and partial breaking of N = 2 supersymmetry, Prog. Theor. Phys. Suppl.164 (2007) 125 [hep-th/0602267] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    J.R. David, E. Gava and K.S. Narain, Partial N = 2 → N = 1 supersymmetry breaking and gravity deformed chiral rings, JHEP06 (2004) 041 [hep-th/0311086] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    L. Andrianopoli, P. Concha, R. D’Auria, E. Rodriguez and M. Trigiante, Observations on BI from \( \mathcal{N} \) = 2 Supergravity and the General Ward Identity, JHEP11 (2015) 061 [arXiv:1508.01474] [INSPIRE].zbMATHCrossRefGoogle Scholar
  19. [19]
    R.A. Laamara, E.H. Saidi and M. Vall, Partial breaking in the rigid limit of \( \mathcal{N} \) = 2 gauged supergravity, PTEP2017 (2017) 113B04 [arXiv:1704.05686] [INSPIRE].
  20. [20]
    E. Witten, Dynamical Breaking of Supersymmetry, Nucl. Phys.B 188 (1981) 513 [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  21. [21]
    S. Cecotti, L. Girardello and M. Porrati, Two into one won’t go, Phys. Lett.145B (1984) 61 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    S. Cecotti, L. Girardello and M. Porrati, Constraints On Partial Superhiggs, Nucl. Phys.B 268 (1986) 295 [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    J. Bagger and A. Galperin, A New Goldstone multiplet for partially broken supersymmetry, Phys. Rev.D 55 (1997) 1091 [hep-th/9608177] [INSPIRE].ADSMathSciNetGoogle Scholar
  24. [24]
    M. Roček and A.A. Tseytlin, Partial breaking of global D = 4 supersymmetry, constrained superfields and three-brane actions, Phys. Rev.D 59 (1999) 106001 [hep-th/9811232] [INSPIRE].ADSGoogle Scholar
  25. [25]
    F. Gonzalez-Rey, I.Y. Park and M. Roček, On dual 3-brane actions with partially broken N = 2 supersymmetry, Nucl. Phys.B 544 (1999) 243 [hep-th/9811130] [INSPIRE].
  26. [26]
    A.A. Tseytlin, Born-Infeld action, supersymmetry and string theory, hep-th/9908105 [INSPIRE].
  27. [27]
    C.P. Burgess, E. Filotas, M. Klein and F. Quevedo, Low-energy brane world effective actions and partial supersymmetry breaking, JHEP10 (2003) 041 [hep-th/0209190] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    I. Antoniadis, J.P. Derendinger and T. Maillard, Nonlinear N = 2 Supersymmetry, Effective Actions and Moduli Stabilization, Nucl. Phys.B 808 (2009) 53 [arXiv:0804.1738] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  29. [29]
    S.M. Kuzenko, The Fayet-Iliopoulos term and nonlinear self-duality, Phys. Rev.D 81 (2010) 085036 [arXiv:0911.5190] [INSPIRE].ADSGoogle Scholar
  30. [30]
    N. Ambrosetti, I. Antoniadis, J.P. Derendinger and P. Tziveloglou, Nonlinear Supersymmetry, Brane-bulk Interactions and Super-Higgs without Gravity, Nucl. Phys.B 835 (2010) 75 [arXiv:0911.5212] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  31. [31]
    S.M. Kuzenko and I.N. McArthur, Goldstino superfields for spontaneously broken N = 2 supersymmetry, JHEP06 (2011) 133 [arXiv:1105.3001] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  32. [32]
    S. Ferrara, M. Porrati and A. Sagnotti, N = 2 Born-Infeld attractors, JHEP12 (2014) 065 [arXiv:1411.4954] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  33. [33]
    S.M. Kuzenko and G. Tartaglino-Mazzucchelli, Nilpotent chiral superfield in N = 2 supergravity and partial rigid supersymmetry breaking, JHEP03 (2016) 092 [arXiv:1512.01964] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  34. [34]
    S. Ferrara, A. Sagnotti and A. Yeranyan, Two-field Born-Infeld with diverse dualities, Nucl. Phys.B 912 (2016) 305 [arXiv:1602.04566] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  35. [35]
    S.M. Kuzenko, I.N. McArthur and G. Tartaglino-Mazzucchelli, Goldstino superfields in \( \mathcal{N} \) = 2 supergravity, JHEP05 (2017) 061 [arXiv:1702.02423] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  36. [36]
    I. Antoniadis, J.-P. Derendinger and C. Markou, Nonlinear \( \mathcal{N} \) = 2 global supersymmetry, JHEP06 (2017) 052 [arXiv:1703.08806] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  37. [37]
    F. Farakos, P. Kočí, G. Tartaglino-Mazzucchelli and R. von Unge, Partial \( \mathcal{N} \) = 2 Supersymmetry Breaking and Deformed Hypermultiplets, JHEP03 (2019) 037 [arXiv:1807.03715] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  38. [38]
    N. Cribiori and S. Lanza, On the dynamical origin of parameters in \( \mathcal{N} \) = 2 supersymmetry, Eur. Phys. J.C 79 (2019) 32 [arXiv:1810.11425] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    I. Antoniadis, H. Jiang and O. Lacombe, \( \mathcal{N} \)= 2 supersymmetry deformations, electromagnetic duality and Dirac-Born-Infeld actions, JHEP07 (2019) 147 [arXiv:1904.06339] [INSPIRE].
  40. [40]
    E. Dudas, S. Ferrara and A. Sagnotti, A superfield constraint for \( \mathcal{N} \) = 2 \( \mathcal{N} \) = 0 breaking, JHEP08 (2017) 109 [arXiv:1707.03414] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  41. [41]
    S.M. Kuzenko and G. Tartaglino-Mazzucchelli, New nilpotent \( \mathcal{N} \) = 2 superfields, Phys. Rev.D 97 (2018) 026003 [arXiv:1707.07390] [INSPIRE].ADSGoogle Scholar
  42. [42]
    I. Antoniadis, J.-P. Derendinger and J.-C. Jacot, N = 2 supersymmetry breaking at two different scales, Nucl. Phys.B 863 (2012) 471 [arXiv:1204.2141] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  43. [43]
    R. Ahl Laamara, M.N. El Kinani, E.H. Saidi and M. Vall, \( \mathcal{N} \) = 2 Supersymmetry Partial Breaking and Tadpole Anomaly, Nucl. Phys.B 901 (2015) 480 [arXiv:1512.00704] [INSPIRE].
  44. [44]
    H. Abe, S. Aoki, S. Imai and Y. Sakamura, Interpolation of partial and full supersymmetry breakings in \( \mathcal{N} \) = 2 supergravity, Nucl. Phys.B (2019) 114690 [arXiv:1901.05679] [INSPIRE].
  45. [45]
    B. de Wit, H. Samtleben and M. Trigiante, On Lagrangians and gaugings of maximal supergravities, Nucl. Phys.B 655 (2003) 93 [hep-th/0212239] [INSPIRE].
  46. [46]
    B. de Wit, H. Samtleben and M. Trigiante, Magnetic charges in local field theory, JHEP09 (2005) 016 [hep-th/0507289] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  47. [47]
    H. Samtleben, Lectures on Gauged Supergravity and Flux Compactifications, Class. Quant. Grav.25 (2008) 214002 [arXiv:0808.4076] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  48. [48]
    M. Trigiante, Gauged Supergravities, Phys. Rept.680 (2017) 1 [arXiv:1609.09745] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  49. [49]
    L. Andrianopoli et al., N = 2 supergravity and N = 2 superYang-Mills theory on general scalar manifolds: Symplectic covariance, gaugings and the momentum map, J. Geom. Phys.23 (1997) 111 [hep-th/9605032] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  50. [50]
    G. Dall’Agata, R. D’Auria, L. Sommovigo and S. Vaula, D = 4, N = 2 gauged supergravity in the presence of tensor multiplets, Nucl. Phys.B 682 (2004) 243 [hep-th/0312210] [INSPIRE].
  51. [51]
    R. D’Auria, L. Sommovigo and S. Vaula, N = 2 supergravity Lagrangian coupled to tensor multiplets with electric and magnetic fluxes, JHEP11 (2004) 028 [hep-th/0409097] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  52. [52]
    L. Andrianopoli, R. D’Auria, L. Sommovigo and M. Trigiante, D = 4, N = 2 Gauged Supergravity coupled to Vector-Tensor Multiplets, Nucl. Phys.B 851 (2011) 1 [arXiv:1103.4813] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Hiroyuki Abe
    • 1
  • Shuntaro Aoki
    • 1
    Email author
  • Sosuke Imai
    • 1
  • Yutaka Sakamura
    • 2
    • 3
  1. 1.Department of PhysicsWaseda UniversityTokyoJapan
  2. 2.KEK Theory CenterInstitute of Particle and Nuclear Studies, KEKIbarakiJapan
  3. 3.Department of Particles and Nuclear PhysicsSOKENDAI (The Graduate University for Advanced Studies)IbarakiJapan

Personalised recommendations