Advertisement

Journal of High Energy Physics

, 2019:94 | Cite as

A modular sewing kit for entanglement wedges

  • Bartlomiej CzechEmail author
  • Jan de Boer
  • Dongsheng Ge
  • Lampros Lamprou
Open Access
Regular Article - Theoretical Physics
  • 19 Downloads

Abstract

We relate the Riemann curvature of a holographic spacetime to an entangle- ment property of the dual CFT state: the Berry curvature of its modular Hamiltonians. The modular Berry connection encodes the relative bases of nearby CFT subregions while its bulk dual, restricted to the code subspace, relates the edge-mode frames of the cor- responding entanglement wedges. At leading order in 1/N and for sufficiently smooth HRRT surfaces, the modular Berry connection simply sews together the orthonormal co- ordinate systems covering neighborhoods of HRRT surfaces. This geometric perspective on entanglement is a promising new tool for connecting the dynamics of entanglement and gravitation.

Keywords

AdS-CFT Correspondence Gauge-gravity correspondence 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    X. Dong, D. Harlow and A.C. Wall, Reconstruction of bulk operators within the entanglement wedge in gauge-gravity duality, Phys. Rev. Lett.117 (2016) 021601 [arXiv:1601.05416] [INSPIRE].
  2. [2]
    A. Almheiri, X. Dong and D. Harlow, Bulk locality and quantum error correction in AdS/CFT, JHEP04 (2015) 163 [arXiv:1411.7041] [INSPIRE].
  3. [3]
    D. Harlow, The Ryu–Takayanagi formula from quantum error correction, Commun. Math. Phys.354 (2017) 865 [arXiv:1607.03901] [INSPIRE].
  4. [4]
    T. Faulkner and A. Lewkowycz, Bulk locality from modular flow, JHEP07 (2017) 151 [arXiv:1704.05464] [INSPIRE].
  5. [5]
    T. Faulkner, A. Lewkowycz and J. Maldacena, Quantum corrections to holographic entanglement entropy, JHEP11 (2013) 074 [arXiv:1307.2892] [INSPIRE].
  6. [6]
    D.L. Jafferis and S.J. Suh, The gravity duals of modular Hamiltonians, JHEP09 (2016) 068 [arXiv:1412.8465] [INSPIRE].
  7. [7]
    D.L. Jafferis, A. Lewkowycz, J. Maldacena and S.J. Suh, Relative entropy equals bulk relative entropy, JHEP06 (2016) 004 [arXiv:1512.06431] [INSPIRE].
  8. [8]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett.96 (2006) 181602 [hep-th/0603001] [INSPIRE].
  9. [9]
    V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP07 (2007) 062 [arXiv:0705.0016] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    M. Van Raamsdonk, Building up spacetime with quantum entanglement, Gen. Rel. Grav.42 (2010) 2323 [Int. J. Mod. Phys.D 19 (2010) 2429] [arXiv:1005.3035] [INSPIRE].
  11. [11]
    J. Maldacena and L. Susskind, Cool horizons for entangled black holes, Fortsch. Phys.61 (2013) 781 [arXiv:1306.0533] [INSPIRE].
  12. [12]
    B. Czech, L. Lamprou and L. Susskind, Entanglement holonomies, arXiv:1807.04276 [INSPIRE].
  13. [13]
    B. Czech, L. Lamprou, S. Mccandlish and J. Sully, Modular Berry connection for entangled subregions in AdS/CFT, Phys. Rev. Lett.120 (2018) 091601 [arXiv:1712.07123] [INSPIRE].
  14. [14]
    W. Donnelly and L. Freidel, Local subsystems in gauge theory and gravity, JHEP09 (2016) 102 [arXiv:1601.04744] [INSPIRE].
  15. [15]
    A. Strominger, Lectures on the infrared structure of gravity and gauge theory, arXiv:1703.05448 [INSPIRE].
  16. [16]
    S.W. Hawking, M.J. Perry and A. Strominger, Superrotation charge and supertranslation hair on black holes, JHEP05 (2017) 161 [arXiv:1611.09175] [INSPIRE].
  17. [17]
    K. Papadodimas and S. Raju, State-dependent bulk-boundary maps and black hole complementarity, Phys. Rev.D 89 (2014) 086010 [arXiv:1310.6335] [INSPIRE].
  18. [18]
    T. Faulkner, R.G. Leigh, O. Parrikar and H. Wang, Modular Hamiltonians for Deformed Half-Spaces and the Averaged Null Energy Condition, JHEP09 (2016) 038 [arXiv:1605.08072] [INSPIRE].
  19. [19]
    M.V. Berry, Quantal phase factors accompanying adiabatic changes, Proc. Roy. Soc. LondonA 392 (1984) 45.Google Scholar
  20. [20]
    F. Wilczek and A. Zee, Appearance of gauge structure in simple dynamical systems, Phys. Rev. Lett.52 (1984) 2111 [INSPIRE].
  21. [21]
    B. Czech et al., A stereoscopic look into the bulk, JHEP07 (2016) 129 [arXiv:1604.03110] [INSPIRE].
  22. [22]
    J. de Boer, F.M. Haehl, M.P. Heller and R.C. Myers, Entanglement, holography and causal diamonds, JHEP08 (2016) 162 [arXiv:1606.03307] [INSPIRE].
  23. [23]
    H. Casini, E. Teste and G. Torroba, Modular Hamiltonians on the null plane and the Markov property of the vacuum state, J. Phys.A 50 (2017) 364001 [arXiv:1703.10656] [INSPIRE].
  24. [24]
    T. Faulkner, M. Li and H. Wang, A modular toolkit for bulk reconstruction, JHEP04 (2019) 119 [arXiv:1806.10560] [INSPIRE].
  25. [25]
    A. Lewkowycz and O. Parrikar, The holographic shape of entanglement and Einstein’s equations, JHEP05 (2018) 147 [arXiv:1802.10103] [INSPIRE].
  26. [26]
    B. Czech and Z. Wang, to appear.Google Scholar
  27. [27]
    V. Coffman, J. Kundu and W.K. Wootters, Distributed entanglement, Phys. Rev.A 61 (2000) 052306 [quant-ph/9907047] [INSPIRE].
  28. [28]
    W. Dur, G. Vidal and J.I. Cirac, Three qubits can be entangled in two inequivalent ways, Phys. Rev.A 62 (2000) 062314 [INSPIRE].
  29. [29]
    F. Verstraete, J. Dehaene, B. de Moor and H. Verschelde, Four qubits can be entangled in nine different ways, Phys. Rev.A 65 (2002) 052112 [quant-ph/0109033].
  30. [30]
    J. Camps, Superselection sectors of gravitational subregions, JHEP01 (2019) 182 [arXiv:1810.01802] [INSPIRE].
  31. [31]
    R. Bousso and M. Porrati, Soft hair as a soft wig, Class. Quant. Grav.34 (2017) 204001 [arXiv:1706.00436] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    R. Bousso and M. Porrati, Observable supertranslations, Phys. Rev.D 96 (2017) 086016 [arXiv:1706.09280] [INSPIRE].
  33. [33]
    X. Dong, D. Harlow and D. Marolf, Flat entanglement spectra in fixed-area states of quantum gravity, JHEP10 (2019) 240 [arXiv:1811.05382] [INSPIRE].
  34. [34]
    J. Kirklin, Unambiguous phase spaces for subregions, JHEP03 (2019) 116 [arXiv:1901.09857] [INSPIRE].
  35. [35]
    W. Donnelly, Entanglement entropy and nonabelian gauge symmetry, Class. Quant. Grav.31 (2014) 214003 [arXiv:1406.7304] [INSPIRE].
  36. [36]
    W. Donnelly and A.C. Wall, Entanglement entropy of electromagnetic edge modes, Phys. Rev. Lett.114 (2015) 111603 [arXiv:1412.1895] [INSPIRE].
  37. [37]
    A. Belin, A. Lewkowycz and G. Sárosi, The boundary dual of the bulk symplectic form, Phys. Lett.B 789 (2019) 71 [arXiv:1806.10144] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    A. Belin, A. Lewkowycz and G. Sárosi, Complexity and the bulk volume, a new York time story, JHEP03 (2019) 044 [arXiv:1811.03097] [INSPIRE].
  39. [39]
    D. Kabat and G. Lifschytz, Emergence of spacetime from the algebra of total modular Hamiltonians, JHEP05 (2019) 017 [arXiv:1812.02915] [INSPIRE].
  40. [40]
    S. Haco, S.W. Hawking, M.J. Perry and A. Strominger, Black hole entropy and soft hair, JHEP12 (2018) 098 [arXiv:1810.01847] [INSPIRE].
  41. [41]
    S.H. Shenker and D. Stanford, Black holes and the butterfly effect, JHEP03 (2014) 067 [arXiv:1306.0622] [INSPIRE].
  42. [42]
    J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, JHEP08 (2016) 106 [arXiv:1503.01409] [INSPIRE].
  43. [43]
    D. Harlow, Wormholes, emergent gauge fields and the weak gravity conjecture, JHEP01 (2016) 122 [arXiv:1510.07911] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Bartlomiej Czech
    • 1
    Email author
  • Jan de Boer
    • 2
  • Dongsheng Ge
    • 3
  • Lampros Lamprou
    • 4
  1. 1.Institute for Advanced StudyTsinghua UniversityBeijingChina
  2. 2.Institute for Theoretical Physics and Delta Institute for Theoretical PhysicsUniversity of AmsterdamAmsterdamThe Netherlands
  3. 3.Laboratoire de Physique de l’École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne UniversitéUniversité Paris-DiderotParisFrance
  4. 4.Center for Theoretical PhysicsMassachusetts Institute of TechnologyCambridgeU.S.A.

Personalised recommendations