Advertisement

Journal of High Energy Physics

, 2019:90 | Cite as

Microstates of rotating AdS5 strings

  • Seyed Morteza HosseiniEmail author
  • Kiril Hristov
  • Alberto Zaffaroni
Open Access
Regular Article - Theoretical Physics
  • 104 Downloads

Abstract

We provide a general formula for the refined topologically twisted index of \( \mathcal{N} \) = 1 gauge theories living on the world-volume of D3-branes at conical Calabi-Yau singularities in the Cardy limit. The index is defined as the partition function on T2×\( {S}_{\omega}^2 \), with a partial topological twist and a Ω-deformation along S , in the presence of background magnetic fluxes and fugacities for the global symmetries and can be used to study the properties of a class of BPS black strings. To this purpose, we find rotating domain- wall solutions of five-dimensional gauged supergravity interpolating between AdS5 and a near horizon region consisting of a warped fibration of BTZ over a sphere. We explicitly construct rotating domain-walls that can be embedded in AdS5× S5 by uplifting a class of four-dimensional rotating black holes. We then provide a microscopic explanation of the entropy of such black holes by using the refined topologically twisted index of \( \mathcal{N} \) = 4 super Yang-Mills.

Keywords

AdS-CFT Correspondence Black Holes in String Theory Supersymmetric Gauge Theory Conformal Field Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    F. Benini and N. Bobev, Exact two-dimensional superconformal R-symmetry and c-extremization, Phys. Rev. Lett.110 (2013) 061601 [arXiv:1211.4030] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    F. Benini and N. Bobev, Two-dimensional SCFTs from wrapped branes and c-extremization, JHEP06 (2013) 005 [arXiv:1302.4451] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  3. [3]
    F. Benini, N. Bobev and P.M. Crichigno, Two-dimensional SCFTs from D3-branes, JHEP07 (2016) 020 [arXiv:1511.09462] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    S.M. Hosseini, A. Nedelin and A. Zaffaroni, The Cardy limit of the topologically twisted index and black strings in AdS 5, JHEP04 (2017) 014 [arXiv:1611.09374] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  5. [5]
    N.A. Nekrasov and S.L. Shatashvili, Bethe/Gauge correspondence on curved spaces, JHEP01 (2015) 100 [arXiv:1405.6046] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    C. Closset and I. Shamir, The \( \mathcal{N} \) = 1 Chiral Multiplet on T 2× S 2and Supersymmetric Localization, JHEP03 (2014) 040 [arXiv:1311.2430] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    F. Benini and A. Zaffaroni, A topologically twisted index for three-dimensional supersymmetric theories, JHEP07 (2015) 127 [arXiv:1504.03698] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    M. Honda and Y. Yoshida, Supersymmetric index on T 2× S 2and elliptic genus, arXiv:1504.04355 [INSPIRE].
  9. [9]
    C. Closset, H. Kim and B. Willett, \( \mathcal{N} \)= 1 supersymmetric indices and the four-dimensional A-model, JHEP08 (2017) 090 [arXiv:1707.05774] [INSPIRE].
  10. [10]
    K. Hristov, Dimensional reduction of BPS attractors in AdS gauged supergravities, JHEP12 (2014) 066 [arXiv:1409.8504] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    S.M. Hosseini, Black hole microstates and supersymmetric localization, Ph.D. Thesis, Milan Bicocca University, (2018), arXiv:1803.01863 [INSPIRE].
  12. [12]
    A. Zaffaroni, Lectures on AdS Black Holes, Holography and Localization, arXiv:1902.07176 [INSPIRE].
  13. [13]
    K. Hristov, S. Katmadas and C. Toldo, Rotating attractors and BPS black holes in AdS 4, JHEP01 (2019) 199 [arXiv:1811.00292] [INSPIRE].ADSzbMATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    F. Benini, K. Hristov and A. Zaffaroni, Black hole microstates in AdS 4from supersymmetric localization, JHEP05 (2016) 054 [arXiv:1511.04085] [INSPIRE].ADSzbMATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    F. Benini, K. Hristov and A. Zaffaroni, Exact microstate counting for dyonic black holes in AdS 4, Phys. Lett.B 771 (2017) 462 [arXiv:1608.07294] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  16. [16]
    S.M. Hosseini and A. Zaffaroni, Large N matrix models for 3d \( \mathcal{N} \) = 2 theories: twisted index, free energy and black holes, JHEP08 (2016) 064 [arXiv:1604.03122] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  17. [17]
    S.M. Hosseini and N. Mekareeya, Large N topologically twisted index: necklace quivers, dualities and Sasaki-Einstein spaces, JHEP08 (2016) 089 [arXiv:1604.03397] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  18. [18]
    S. Ferrara, R. Kallosh and A. Strominger, N = 2 extremal black holes, Phys. Rev.D 52 (1995) R5412 [hep-th/9508072] [INSPIRE].ADSMathSciNetGoogle Scholar
  19. [19]
    S.L. Cacciatori and D. Klemm, Supersymmetric AdS 4black holes and attractors, JHEP01 (2010) 085 [arXiv:0911.4926] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  20. [20]
    G. Dall’Agata and A. Gnecchi, Flow equations and attractors for black holes in N = 2 U(1) gauged supergravity, JHEP03 (2011) 037 [arXiv:1012.3756] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  21. [21]
    S.M. Hosseini, I. Yaakov and A. Zaffaroni, Topologically twisted indices in five dimensions and holography, JHEP11 (2018) 119 [arXiv:1808.06626] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  22. [22]
    P. Karndumri and E. O Colgain, Supergravity dual of c-extremization, Phys. Rev.D 87 (2013) 101902 [arXiv:1302.6532] [INSPIRE].
  23. [23]
    A. Amariti and C. Toldo, Betti multiplets, flows across dimensions and c-extremization, JHEP07 (2017) 040 [arXiv:1610.08858] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  24. [24]
    A. Amariti, L. Cassia and S. Penati, Surveying 4d SCFTs twisted on Riemann surfaces, JHEP06 (2017) 056 [arXiv:1703.08201] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  25. [25]
    A. Amariti, L. Cassia and S. Penati, c-extremization from toric geometry, Nucl. Phys.B 929 (2018) 137 [arXiv:1706.07752] [INSPIRE].
  26. [26]
    C. Couzens, J.P. Gauntlett, D. Martelli and J. Sparks, A geometric dual of c-extremization, JHEP01 (2019) 212 [arXiv:1810.11026] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  27. [27]
    J.P. Gauntlett, D. Martelli and J. Sparks, Toric geometry and the dual of c-extremization, JHEP01 (2019) 204 [arXiv:1812.05597] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  28. [28]
    S.M. Hosseini and A. Zaffaroni, Proving the equivalence of c-extremization and its gravitational dual for all toric quivers, JHEP03 (2019) 108 [arXiv:1901.05977] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  29. [29]
    M. Henningson and K. Skenderis, The holographic Weyl anomaly, JHEP07 (1998) 023 [hep-th/9806087] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  30. [30]
    C. Closset, H. Kim and B. Willett, Supersymmetric partition functions and the three-dimensional A-twist, JHEP03 (2017) 074 [arXiv:1701.03171] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  31. [31]
    S.M. Hosseini, K. Hristov and A. Passias, Holographic microstate counting for AdS 4black holes in massive IIA supergravity, JHEP10 (2017) 190 [arXiv:1707.06884] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  32. [32]
    F. Benini, H. Khachatryan and P. Milan, Black hole entropy in massive Type IIA, Class. Quant. Grav.35 (2018) 035004 [arXiv:1707.06886] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  33. [33]
    F. Benini and P. Milan, Black holes in 4d \( \mathcal{N} \) = 4 Super-Yang-Mills, arXiv:1812.09613 [INSPIRE].
  34. [34]
    J. Hong and J.T. Liu, The topologically twisted index of \( \mathcal{N} \)= 4 super-Yang-Mills on T 2× S 2and the elliptic genus, JHEP07 (2018) 018 [arXiv:1804.04592] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  35. [35]
    D. Anselmi, D.Z. Freedman, M.T. Grisaru and A.A. Johansen, Nonperturbative formulas for central functions of supersymmetric gauge theories, Nucl. Phys.B 526 (1998) 543 [hep-th/9708042] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  36. [36]
    A. Butti and A. Zaffaroni, R-charges from toric diagrams and the equivalence of a-maximization and Z-minimization, JHEP11 (2005) 019 [hep-th/0506232] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    S. Benvenuti and M. Kruczenski, From Sasaki-Einstein spaces to quivers via BPS geodesics: L p,q|r , JHEP04 (2006) 033 [hep-th/0505206] [INSPIRE].
  38. [38]
    S. Benvenuti, L.A. Pando Zayas and Y. Tachikawa, Triangle anomalies from Einstein manifolds, Adv. Theor. Math. Phys.10 (2006) 395 [hep-th/0601054] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
  39. [39]
    I.R. Klebanov and E. Witten, Superconformal field theory on three-branes at a Calabi-Yau singularity, Nucl. Phys.B 536 (1998) 199 [hep-th/9807080] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  40. [40]
    M. Azzola, D. Klemm and M. Rabbiosi, AdS 5black strings in the STU model of FI-gauged N = 2 supergravity, JHEP10 (2018) 080 [arXiv:1803.03570] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  41. [41]
    S.M. Hosseini, K. Hristov and A. Zaffaroni, An extremization principle for the entropy of rotating BPS black holes in AdS 5, JHEP07 (2017) 106 [arXiv:1705.05383] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  42. [42]
    J.P. Gauntlett and O. Varela, Consistent Kaluza-Klein reductions for general supersymmetric AdS solutions, Phys. Rev.D 76 (2007) 126007 [arXiv:0707.2315] [INSPIRE].ADSMathSciNetGoogle Scholar
  43. [43]
    D. Cassani and A.F. Faedo, A supersymmetric consistent truncation for conifold solutions, Nucl. Phys.B 843 (2011) 455 [arXiv:1008.0883] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  44. [44]
    I. Bena, G. Giecold, M. Granã, N. Halmagyi and F. Orsi, Supersymmetric Consistent Truncations of IIB on T 1,1 , JHEP04 (2011) 021 [arXiv:1008.0983] [INSPIRE].ADSzbMATHCrossRefMathSciNetGoogle Scholar
  45. [45]
    S. Ferrara and A. Zaffaroni, N = 1, N = 2 4-D superconformal field theories and supergravity in AdS 5, Phys. Lett.B 431 (1998) 49 [hep-th/9803060] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    L. Andrianopoli, S. Ferrara and M.A. Lledó, Scherk-Schwarz reduction of D = 5 special and quaternionic geometry, Class. Quant. Grav.21 (2004) 4677 [hep-th/0405164] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  47. [47]
    D. Gaiotto, A. Strominger and X. Yin, New connections between 4-D and 5-D black holes, JHEP02 (2006) 024 [hep-th/0503217] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    K. Behrndt, G. Lopes Cardoso and S. Mahapatra, Exploring the relation between 4-D and 5-D BPS solutions, Nucl. Phys.B 732 (2006) 200 [hep-th/0506251] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  49. [49]
    G. Lopes Cardoso, J.M. Oberreuter and J. Perz, Entropy function for rotating extremal black holes in very special geometry, JHEP05 (2007) 025 [hep-th/0701176] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  50. [50]
    L. Andrianopoli et al., N = 2 supergravity and N = 2 superYang-Mills theory on general scalar manifolds: Symplectic covariance, gaugings and the momentum map, J. Geom. Phys.23 (1997) 111 [hep-th/9605032] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  51. [51]
    K. Hristov and S. Katmadas, Wilson lines for AdS 5black strings, JHEP02 (2015) 009 [arXiv:1411.2432] [INSPIRE].ADSzbMATHCrossRefMathSciNetGoogle Scholar
  52. [52]
    N. Halmagyi, Static BPS black holes in AdS 4with general dyonic charges, JHEP03 (2015) 032 [arXiv:1408.2831] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  53. [53]
    H.K. Kunduri and J. Lucietti, Near-horizon geometries of supersymmetric AdS 5black holes, JHEP12 (2007) 015 [arXiv:0708.3695] [INSPIRE].ADSzbMATHCrossRefMathSciNetGoogle Scholar
  54. [54]
    A. Cabo-Bizet, V.I. Giraldo-Rivera and L.A. Pando Zayas, Microstate counting of AdS 4hyperbolic black hole entropy via the topologically twisted index, JHEP08 (2017) 023 [arXiv:1701.07893] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  55. [55]
    J.L. Cardy, Operator Content of Two-Dimensional Conformally Invariant Theories, Nucl. Phys.B 270 (1986) 186 [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  56. [56]
    R. Dijkgraaf, J.M. Maldacena, G.W. Moore and E.P. Verlinde, A black hole Farey tail, hep-th/0005003 [INSPIRE].
  57. [57]
    J. Manschot and G.W. Moore, A Modern Farey Tail, Commun. Num. Theor. Phys.4 (2010) 103 [arXiv:0712.0573] [INSPIRE].zbMATHCrossRefGoogle Scholar
  58. [58]
    A. Dabholkar, S. Murthy and D. Zagier, Quantum Black Holes, Wall Crossing and Mock Modular Forms, arXiv:1208.4074 [INSPIRE].
  59. [59]
    N. Bobev, V.S. Min and K. Pilch, Mass-deformed ABJM and black holes in AdS 4, JHEP03 (2018) 050 [arXiv:1801.03135] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Kavli IPMU (WPI), UTIASThe University of TokyoChibaJapan
  2. 2.Institute for Nuclear Research and Nuclear EnergyBulgarian Academy of SciencesSofiaBulgaria
  3. 3.Dipartimento di FisicaUniversità di Milano-BicoccaMilanoItaly
  4. 4.INFN, sezione di Milano — BicoccaMilanoItaly

Personalised recommendations