Advertisement

Journal of High Energy Physics

, 2019:88 | Cite as

Probing Higgs couplings to light quarks via Higgs pair production

  • Lina AlasfarEmail author
  • Roberto Corral Lopez
  • Ramona Gröber
Open Access
Regular Article - Theoretical Physics
  • 12 Downloads

Abstract

We consider the potential of the Higgs boson pair production process to probe the light quark Yukawa couplings. We show within an effective theory description that the prospects of constraining enhanced first generation light quark Yukawa couplings in Higgs pair production are similar to other methods and channels, due to a coupling of two Higgs bosons to two fermions. Higgs pair production can hence also probe if the Higgs sector couples non-linearly to the light quark generations. For the second generation, we show that by employing charm tagging for the Higgs boson pair decaying to c\( \overline{c} \)γγ, we can obtain similarly good prospects for measuring the charm Yukawa coupling as in other direct probes.

Keywords

Phenomenological Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    ATLAS collaboration, Combined measurements of Higgs boson production and decay using up to 80 fb 1of proton-proton collision data at \( \sqrt{s} \) = 13 TeV collected with the ATLAS experiment, arXiv:1909.02845 [INSPIRE].
  2. [2]
    ATLAS collaboration, Combination of searches for Higgs boson pairs in pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, arXiv:1906.02025 [INSPIRE].
  3. [3]
    L. Di Luzio, R. Gröber and M. Spannowsky, Maxi-sizing the trilinear Higgs self-coupling: how large could it be?, Eur. Phys. J.C 77 (2017) 788 [arXiv:1704.02311] [INSPIRE].
  4. [4]
    A. Falkowski and R. Rattazzi, Which EFT, JHEP10 (2019) 255 [arXiv:1902.05936] [INSPIRE].CrossRefGoogle Scholar
  5. [5]
    T. Plehn and M. Rauch, The quartic Higgs coupling at hadron colliders, Phys. Rev.D 72 (2005) 053008 [hep-ph/0507321] [INSPIRE].
  6. [6]
    T. Binoth, S. Karg, N. Kauer and R. Ruckl, Multi-Higgs boson production in the Standard Model and beyond, Phys. Rev.D 74 (2006) 113008 [hep-ph/0608057] [INSPIRE].
  7. [7]
    CMS collaboration, Search for a standard model-like Higgs boson in the μ +μ and e +e decay channels at the LHC, Phys. Lett.B 744 (2015) 184 [arXiv:1410.6679] [INSPIRE].
  8. [8]
    A.L. Kagan, G. Perez, F. Petriello, Y. Soreq, S. Stoynev and J. Zupan, Exclusive Window onto Higgs Yukawa Couplings, Phys. Rev. Lett.114 (2015) 101802 [arXiv:1406.1722] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    G. Perez, Y. Soreq, E. Stamou and K. Tobioka, Constraining the charm Yukawa and Higgs-quark coupling universality, Phys. Rev.D 92 (2015) 033016 [arXiv:1503.00290] [INSPIRE].
  10. [10]
    J. de Blas et al., Higgs Boson Studies at Future Particle Colliders, arXiv:1905.03764 [INSPIRE].
  11. [11]
    ATLAS collaboration, Constraints on off-shell Higgs boson production and the Higgs boson total width in ZZ → 4ℓ and ZZ → 2ℓ2ν final states with the ATLAS detector, Phys. Lett.B 786 (2018) 223 [arXiv:1808.01191] [INSPIRE].
  12. [12]
    CMS collaboration, Measurements of the Higgs boson width and anomalous H V V couplings from on-shell and off-shell production in the four-lepton final state, Phys. Rev.D 99 (2019) 112003 [arXiv:1901.00174] [INSPIRE].
  13. [13]
    F. Caola and K. Melnikov, Constraining the Higgs boson width with ZZ production at the LHC, Phys. Rev.D 88 (2013) 054024 [arXiv:1307.4935] [INSPIRE].
  14. [14]
    C. Englert and M. Spannowsky, Limitations and Opportunities of Off-Shell Coupling Measurements, Phys. Rev.D 90 (2014) 053003 [arXiv:1405.0285] [INSPIRE].
  15. [15]
    M. König and M. Neubert, Exclusive Radiative Higgs Decays as Probes of Light-Quark Yukawa Couplings, JHEP08 (2015) 012 [arXiv:1505.03870] [INSPIRE].
  16. [16]
    G.T. Bodwin, F. Petriello, S. Stoynev and M. Velasco, Higgs boson decays to quarkonia and the H \( \overline{c} \)c coupling, Phys. Rev.D 88 (2013) 053003 [arXiv:1306.5770] [INSPIRE].
  17. [17]
    ATLAS collaboration, Search for exclusive Higgs and Z boson decays to 𝜙γ and ργ with the ATLAS detector, JHEP07 (2018) 127 [arXiv:1712.02758] [INSPIRE].
  18. [18]
    ATLAS collaboration, Searches for exclusive Higgs and Z boson decays into J/𝜓γ, 𝜓 (2S)γ and Υ(nS)γ at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Lett.B 786 (2018) 134 [arXiv:1807.00802] [INSPIRE].
  19. [19]
    CMS collaboration, Search for rare decays of Z and Higgs bosons to J/𝜓 and a photon in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Eur. Phys. J.C 79 (2019) 94 [arXiv:1810.10056] [INSPIRE].
  20. [20]
    G. Perez, Y. Soreq, E. Stamou and K. Tobioka, Prospects for measuring the Higgs boson coupling to light quarks, Phys. Rev.D 93 (2016) 013001 [arXiv:1505.06689] [INSPIRE].
  21. [21]
    ATLAS collaboration, Prospects for H → c \( \overline{c} \)using Charm Tagging with the ATLAS Experiment at the HL-LHC, ATL-PHYS-PUB-2018-016.Google Scholar
  22. [22]
    CMS collaboration, Search for the standard model Higgs boson decaying to charm quarks, CMS-PAS-HIG-18-031.Google Scholar
  23. [23]
    I. Brivio, F. Goertz and G. Isidori, Probing the Charm Quark Yukawa Coupling in Higgs+Charm Production, Phys. Rev. Lett.115 (2015) 211801 [arXiv:1507.02916] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    F. Bishara, U. Haisch, P.F. Monni and E. Re, Constraining Light-Quark Yukawa Couplings from Higgs Distributions, Phys. Rev. Lett.118 (2017) 121801 [arXiv:1606.09253] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    Y. Soreq, H.X. Zhu and J. Zupan, Light quark Yukawa couplings from Higgs kinematics, JHEP12 (2016) 045 [arXiv:1606.09621] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    C. Delaunay, R. Ozeri, G. Perez and Y. Soreq, Probing Atomic Higgs-like Forces at the Precision Frontier, Phys. Rev.D 96 (2017) 093001 [arXiv:1601.05087] [INSPIRE].
  27. [27]
    U. Baur, T. Plehn and D.L. Rainwater, Probing the Higgs selfcoupling at hadron colliders using rare decays, Phys. Rev.D 69 (2004) 053004 [hep-ph/0310056] [INSPIRE].
  28. [28]
    J. Baglio, A. Djouadi, R. Gröber, M.M. Mühlleitner, J. Quevillon and M. Spira, The measurement of the Higgs self-coupling at the LHC: theoretical status, JHEP04 (2013) 151 [arXiv:1212.5581] [INSPIRE].
  29. [29]
    A. Azatov, R. Contino, G. Panico and M. Son, Effective field theory analysis of double Higgs boson production via gluon fusion, Phys. Rev.D 92 (2015) 035001 [arXiv:1502.00539] [INSPIRE].
  30. [30]
    F. Kling, T. Plehn and P. Schichtel, Maximizing the significance in Higgs boson pair analyses, Phys. Rev.D 95 (2017) 035026 [arXiv:1607.07441] [INSPIRE].
  31. [31]
    V. Barger, L.L. Everett, C.B. Jackson and G. Shaughnessy, Higgs-Pair Production and Measurement of the Triscalar Coupling at LH C (8, 14), Phys. Lett.B 728 (2014) 433 [arXiv:1311.2931] [INSPIRE].
  32. [32]
    C.-T. Lu, J. Chang, K. Cheung and J.S. Lee, An exploratory study of Higgs-boson pair production, JHEP08 (2015) 133 [arXiv:1505.00957] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    A. Adhikary, S. Banerjee, R.K. Barman, B. Bhattacherjee and S. Niyogi, Revisiting the non-resonant Higgs pair production at the HL-LHC, JHEP07 (2018) 116 [arXiv:1712.05346] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    A. Alves, T. Ghosh and K. Sinha, Can We Discover Double Higgs Production at the LHC?, Phys. Rev.D 96 (2017) 035022 [arXiv:1704.07395] [INSPIRE].
  35. [35]
    J. Chang, K. Cheung, J.S. Lee, C.-T. Lu and J. Park, Higgs-boson-pair production H (→ b \( \overline{b} \))H (→ γγ) from gluon fusion at the HL-LHC and HL-100 TeV hadron collider, Phys. Rev.D 100 (2019) 096001 [arXiv:1804.07130] [INSPIRE].
  36. [36]
    F. Goertz, A. Papaefstathiou, L.L. Yang and J. Zurita, Higgs boson pair production in the D = 6 extension of the SM, JHEP04 (2015) 167 [arXiv:1410.3471] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    M.J. Dolan, C. Englert and M. Spannowsky, Higgs self-coupling measurements at the LHC, JHEP10 (2012) 112 [arXiv:1206.5001] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    D.E. Ferreira de Lima, A. Papaefstathiou and M. Spannowsky, Standard model Higgs boson pair production in the (b \( \overline{b} \))(b \( \overline{b} \)) final state, JHEP08 (2014) 030 [arXiv:1404.7139] [INSPIRE].CrossRefGoogle Scholar
  39. [39]
    J.K. Behr, D. Bortoletto, J.A. Frost, N.P. Hartland, C. Issever and J. Rojo, Boosting Higgs pair production in the b \( \overline{b} \)b \( \overline{b} \)final state with multivariate techniques, Eur. Phys. J.C 76 (2016) 386 [arXiv:1512.08928] [INSPIRE].
  40. [40]
    D. Wardrope, E. Jansen, N. Konstantinidis, B. Cooper, R. Falla and N. Norjoharuddeen, Non-resonant Higgs-pair production in the b \( \overline{b} \)b \( \overline{b} \)final state at the LHC, Eur. Phys. J.C 75 (2015) 219 [arXiv:1410.2794] [INSPIRE].
  41. [41]
    ATLAS collaboration, Measurement prospects of the pair production and self-coupling of the Higgs boson with the ATLAS experiment at the HL-LHC, ATL-PHYS-PUB-2018-053.Google Scholar
  42. [42]
    CMS collaboration, Prospects for HH measurements at the HL-LHC, CMS-PAS-FTR-18-019.Google Scholar
  43. [43]
    C.O. Dib, R. Rosenfeld and A. Zerwekh, Double Higgs production and quadratic divergence cancellation in little Higgs models with T parity, JHEP05 (2006) 074 [hep-ph/0509179] [INSPIRE].
  44. [44]
    R. Gröber and M. Mühlleitner, Composite Higgs Boson Pair Production at the LHC, JHEP06 (2011) 020 [arXiv:1012.1562] [INSPIRE].
  45. [45]
    R. Contino, M. Ghezzi, M. Moretti, G. Panico, F. Piccinini and A. Wulzer, Anomalous Couplings in Double Higgs Production, JHEP08 (2012) 154 [arXiv:1205.5444] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    R. Gröber, M. Mühlleitner and M. Spira, Signs of Composite Higgs Pair Production at Next-to-Leading Order, JHEP06 (2016) 080 [arXiv:1602.05851] [INSPIRE].
  47. [47]
    S. Bar-Shalom and A. Soni, Universally enhanced light-quarks Yukawa couplings paradigm, Phys. Rev.D 98 (2018) 055001 [arXiv:1804.02400] [INSPIRE].
  48. [48]
    G. Blankenburg, J. Ellis and G. Isidori, Flavour-Changing Decays of a 125 GeV Higgs-like Particle, Phys. Lett.B 712 (2012) 386 [arXiv:1202.5704] [INSPIRE].
  49. [49]
    G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: An Effective field theory approach, Nucl. Phys.B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].
  50. [50]
    ATLAS collaboration, Combined measurements of Higgs boson production and decay using up to 80 fb 1of proton-proton collision data at \( \sqrt{s} \) = 13 TeV collected with the ATLAS experiment, ATLAS-CONF-2018-031.Google Scholar
  51. [51]
    CMS collaboration, Measurement of the top quark Yukawa coupling from tt kinematic distributions in the lepton+jets final state in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, CERN-EP-2019-119.Google Scholar
  52. [52]
    D. Egana-Ugrinovic, S. Homiller and P. Meade, Aligned and Spontaneous Flavor Violation, Phys. Rev. Lett.123 (2019) 031802 [arXiv:1811.00017] [INSPIRE].
  53. [53]
    D. Egana-Ugrinovic, S. Homiller and P.R. Meade, Higgs bosons with large couplings to light quarks, arXiv:1908.11376 [INSPIRE].
  54. [54]
    S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 1., Phys. Rev.177 (1969) 2239 [INSPIRE].
  55. [55]
    C.G. Callan Jr., S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 2., Phys. Rev.177 (1969) 2247 [INSPIRE].
  56. [56]
    R. Contino, C. Grojean, M. Moretti, F. Piccinini and R. Rattazzi, Strong Double Higgs Production at the LHC, JHEP05 (2010) 089 [arXiv:1002.1011] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    O.J.P. Éboli, G.C. Marques, S.F. Novaes and A.A. Natale, Twin Higgs boson production, Phys. Lett.B 197 (1987) 269 [INSPIRE].
  58. [58]
    E.W.N. Glover and J.J. van der Bij, Higgs boson pair production via gluon fusion, Nucl. Phys.B 309 (1988) 282 [INSPIRE].
  59. [59]
    D.A. Dicus, C. Kao and S.S.D. Willenbrock, Higgs Boson Pair Production From Gluon Fusion, Phys. Lett.B 203 (1988) 457 [INSPIRE].
  60. [60]
    T. Plehn, M. Spira and P.M. Zerwas, Pair production of neutral Higgs particles in gluon-gluon collisions, Nucl. Phys.B 479 (1996) 46 [Erratum ibid.B 531 (1998) 655] [hep-ph/9603205] [INSPIRE].
  61. [61]
    S. Dawson, S. Dittmaier and M. Spira, Neutral Higgs boson pair production at hadron colliders: QCD corrections, Phys. Rev.D 58 (1998) 115012 [hep-ph/9805244] [INSPIRE].
  62. [62]
    S. Borowka et al., Full top quark mass dependence in Higgs boson pair production at NLO, JHEP10 (2016) 107 [arXiv:1608.04798] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    S. Borowka et al., Higgs Boson Pair Production in Gluon Fusion at Next-to-Leading Order with Full Top-Quark Mass Dependence, Phys. Rev. Lett.117 (2016) 012001 [Erratum ibid.117 (2016) 079901] [arXiv:1604.06447] [INSPIRE].
  64. [64]
    J. Baglio, F. Campanario, S. Glaus, M. Mühlleitner, M. Spira and J. Streicher, Gluon fusion into Higgs pairs at NLO QCD and the top mass scheme, Eur. Phys. J.C 79 (2019) 459 [arXiv:1811.05692] [INSPIRE].
  65. [65]
    R. Bonciani, G. Degrassi, P.P. Giardino and R. Gröber, Analytical Method for Next-to-Leading-Order QCD Corrections to Double-Higgs Production, Phys. Rev. Lett.121 (2018) 162003 [arXiv:1806.11564] [INSPIRE].
  66. [66]
    R. Gröber, A. Maier and T. Rauh, Reconstruction of top-quark mass effects in Higgs pair production and other gluon-fusion processes, JHEP03 (2018) 020 [arXiv:1709.07799] [INSPIRE].
  67. [67]
    J. Davies, G. Mishima, M. Steinhauser and D. Wellmann, Double Higgs boson production at NLO in the high-energy limit: complete analytic results, JHEP01 (2019) 176 [arXiv:1811.05489] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    J. Grigo, K. Melnikov and M. Steinhauser, Virtual corrections to Higgs boson pair production in the large top quark mass limit, Nucl. Phys.B 888 (2014) 17 [arXiv:1408.2422] [INSPIRE].
  69. [69]
    D. de Florian and J. Mazzitelli, Higgs Boson Pair Production at Next-to-Next-to-Leading Order in QCD, Phys. Rev. Lett.111 (2013) 201801 [arXiv:1309.6594] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    M. Grazzini et al., Higgs boson pair production at NNLO with top quark mass effects, JHEP05 (2018) 059 [arXiv:1803.02463] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    J. Davies, R. Gröber, A. Maier, T. Rauh and M. Steinhauser, Top quark mass dependence of the Higgs boson-gluon form factor at three loops, Phys. Rev.D 100 (2019) 034017 [arXiv:1906.00982] [INSPIRE].
  72. [72]
    J. Davies and M. Steinhauser, Three-loop form factors for Higgs boson pair production in the large top mass limit, JHEP10 (2019) 166 [arXiv:1909.01361] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    R.V. Harlander, M. Prausa and J. Usovitsch, The light-fermion contribution to the exact Higgs-gluon form factor in QCD, JHEP10 (2019) 148 [arXiv:1907.06957] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    NNPDF collaboration, Parton distributions from high-precision collider data, Eur. Phys. J.C 77 (2017) 663 [arXiv:1706.00428] [INSPIRE].
  75. [75]
    A. Buckley et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J.C 75 (2015) 132 [arXiv:1412.7420] [INSPIRE].
  76. [76]
    A. Denner, S. Dittmaier and L. Hofer, COLLIER — A fortran-library for one-loop integrals, PoS(LL2014)071 (2014) [arXiv:1407.0087] [INSPIRE].
  77. [77]
    LHC Higgs Cross Section Working Group collaboration, Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector, arXiv:1610.07922 [INSPIRE].
  78. [78]
    D. de Florian and J. Mazzitelli, Higgs pair production at next-to-next-to-leading logarithmic accuracy at the LHC, JHEP09 (2015) 053 [arXiv:1505.07122] [INSPIRE].CrossRefGoogle Scholar
  79. [79]
    D. Dicus, T. Stelzer, Z. Sullivan and S. Willenbrock, Higgs boson production in association with bottom quarks at next-to-leading order, Phys. Rev.D 59 (1999) 094016 [hep-ph/9811492] [INSPIRE].
  80. [80]
    C. Balázs, H.-J. He and C.P. Yuan, QCD corrections to scalar production via heavy quark fusion at hadron colliders, Phys. Rev.D 60 (1999) 114001 [hep-ph/9812263] [INSPIRE].
  81. [81]
    R.V. Harlander and W.B. Kilgore, Higgs boson production in bottom quark fusion at next-to-next-to leading order, Phys. Rev.D 68 (2003) 013001 [hep-ph/0304035] [INSPIRE].
  82. [82]
    S. Dawson, C. Kao, Y. Wang and P. Williams, QCD Corrections to Higgs Pair Production in Bottom Quark Fusion, Phys. Rev.D 75 (2007) 013007 [hep-ph/0610284] [INSPIRE].
  83. [83]
    A.H. Ajjath et al., Higgs pair production from bottom quark annihilation to NNLO in QCD, JHEP05 (2019) 030 [arXiv:1811.01853] [INSPIRE].
  84. [84]
    M. Spira, Higgs Boson Production and Decay at Hadron Colliders, Prog. Part. Nucl. Phys.95 (2017) 98 [arXiv:1612.07651] [INSPIRE].
  85. [85]
    V.N. Gribov and L.N. Lipatov, Deep inelastic e p scattering in perturbation theory, Sov. J. Nucl. Phys.15 (1972) 438 [INSPIRE].
  86. [86]
    G. Altarelli and G. Parisi, Asymptotic Freedom in Parton Language, Nucl. Phys.B 126 (1977) 298 [INSPIRE].
  87. [87]
    Y.L. Dokshitzer, Calculation of the Structure Functions for Deep Inelastic Scattering and e +e Annihilation by Perturbation Theory in Quantum Chromodynamics., Sov. Phys. JETP46 (1977) 641 [INSPIRE].Google Scholar
  88. [88]
    A. Djouadi, J. Kalinowski and M. Spira, HDECAY: A Program for Higgs boson decays in the standard model and its supersymmetric extension, Comput. Phys. Commun.108 (1998) 56 [hep-ph/9704448] [INSPIRE].
  89. [89]
    A. Djouadi, J. Kalinowski, M. Muehlleitner and M. Spira, HDECAY: Twenty++ years after, Comput. Phys. Commun.238 (2019) 214 [arXiv:1801.09506] [INSPIRE].
  90. [90]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP05 (2006) 026 [hep-ph/0603175] [INSPIRE].
  91. [91]
    D.C. Hall, RootTuple: A library enabling ROOT n-tuple output from FORTRAN HEP programs, http://roottuple.hepforge.org.
  92. [92]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J.C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].
  93. [93]
    J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett.100 (2008) 242001 [arXiv:0802.2470] [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    CMS collaboration, Inclusive b-jet production in pp collisions at \( \sqrt{s} \) = 7 TeV, JHEP04 (2012) 084 [arXiv:1202.4617] [INSPIRE].
  95. [95]
    CMS collaboration, Performance of b tagging at \( \sqrt{s} \) = 8 TeV in multijet, ttbar and boosted topology events, CMS-PAS-BTV-13-001.Google Scholar
  96. [96]
    ATLAS collaboration, Performance assumptions based on full simulation for an upgraded ATLAS detector at a High-Luminosity LHC, ATL-PHYS-PUB-2013-009.Google Scholar
  97. [97]
    CMS collaboration, Photon ID performance with 19.6 fb 1of data collected at \( \sqrt{s} \) = 8 TeV with the CMS detector, CMS-DP-2013-010.Google Scholar
  98. [98]
    G. Cowan, K. Cranmer, E. Gross and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J.C 71 (2011) 1554 [Erratum ibid.C 73 (2013) 2501] [arXiv:1007.1727] [INSPIRE].
  99. [99]
    D. Kim and M. Park, Enhancement of new physics signal sensitivity with mistagged charm quarks, Phys. Lett.B 758 (2016) 190 [arXiv:1507.03990] [INSPIRE].
  100. [100]
    CMS collaboration, Search for the standard model Higgs boson produced in association with a W or a Z boson and decaying to bottom quarks, Phys. Rev.D 89 (2014) 012003 [arXiv:1310.3687] [INSPIRE].
  101. [101]
    ATLAS collaboration, Search for the bb decay of the Standard Model Higgs boson in associated (W/Z )H production with the ATLAS detector, JHEP01 (2015) 069 [arXiv:1409.6212] [INSPIRE].
  102. [102]
    N.A. Heard and P. Rubin-Delanchy, Choosing between methods of combining p-values, Biometrika105 (2018) 239 [arXiv:1707.06897].
  103. [103]
    ATLAS collaboration, Search for Scalar Charm Quark Pair Production in pp Collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS Detector, Phys. Rev. Lett.114 (2015) 161801 [arXiv:1501.01325] [INSPIRE].
  104. [104]
    ATLAS collaboration, Search for single top-quark production via FCNC in strong interaction in \( \sqrt{s} \) = 8 TeV ATLAS data, ATLAS-CONF-2013-063.Google Scholar
  105. [105]
    M. Capeans et al., ATLAS Insertable B-Layer Technical Design Report, CERN-LHCC-2010-013.Google Scholar
  106. [106]
    ATLAS collaboration, Track Reconstruction Performance of the ATLAS Inner Detector at \( \sqrt{s} \) = 13 TeV, ATL-PHYS-PUB-2015-018.Google Scholar
  107. [107]
    M. Bauer, M. Carena and A. Carmona, Higgs Pair Production as a Signal of Enhanced Yukawa Couplings, Phys. Rev. Lett.121 (2018) 021801 [arXiv:1801.00363] [INSPIRE].
  108. [108]
    Particle Data Group collaboration, Review of Particle Physics, Phys. Rev.D 98 (2018) 030001 [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Humboldt-Universität zu BerlinInstitut für PhysikBerlinGermany
  2. 2.CAFPE and Departamento de Fìsica Téorica y del CosmosUniversidad de GranadaGranadaSpain
  3. 3.Dipartimento di Fisica e Astronomia “G. Galilei”Università di Padova, Italy and Istituto Nazionale di Fisica Nucleare, Sezione di PadovaPadovaItaly

Personalised recommendations