Advertisement

Journal of High Energy Physics

, 2019:77 | Cite as

An algebraic classification of exceptional EFTs. Part II. Supersymmetry

  • Diederik Roest
  • David StefanyszynEmail author
  • Pelle Werkman
Open Access
Regular Article - Theoretical Physics
  • 18 Downloads

Abstract

We present a novel approach to classify supersymmetric effective field theories (EFTs) whose scattering amplitudes exhibit enhanced soft limits. These enhancements arise due to non-linearly realised symmetries on the Goldstone modes of such EFTs and we classify the algebras that these symmetries can form. Our main focus is on so-called exceptional algebras which lead to field-dependent transformation rules and EFTs with the maximum possible soft enhancement at a given derivative power counting. We adapt existing techniques for Poincaré invariant theories to the supersymmetric case, and introduce superspace inverse Higgs constraints as a method of reducing the number of Goldstone modes while maintaining all symmetries. Restricting to the case of a single Goldstone supermultiplet in four dimensions, we classify the exceptional algebras and EFTs for a chiral, Maxwell or real linear supermultiplet. Moreover, we show how our algebraic approach allows one to read off the soft weights of the different component fields from superspace inverse Higgs trees, which are the algebraic cousin of the on-shell soft data one provides to soft bootstrap EFTs using on-shell recursion. Our Lie-superalgebraic approach extends the results of on-shell methods and provides a complementary perspective on non-linear realisations.

Keywords

Effective Field Theories Space-Time Symmetries Spontaneous Symmetry Breaking Supersymmetric Effective Theories 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    H. Elvang and Y.-t. Huang, Scattering Amplitudes, arXiv:1308.1697 [INSPIRE].
  2. [2]
    C. Cheung, K. Kampf, J. Novotny and J. Trnka, Effective Field Theories from Soft Limits of Scattering Amplitudes, Phys. Rev. Lett.114 (2015) 221602 [arXiv:1412.4095] [INSPIRE].CrossRefADSGoogle Scholar
  3. [3]
    C. Cheung, K. Kampf, J. Novotny, C.-H. Shen and J. Trnka, A Periodic Table of Effective Field Theories, JHEP02 (2017) 020 [arXiv:1611.03137] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  4. [4]
    A. Padilla, D. Stefanyszyn and T. Wilson, Probing Scalar Effective Field Theories with the Soft Limits of Scattering Amplitudes, JHEP04 (2017) 015 [arXiv:1612.04283] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  5. [5]
    C. Cheung, K. Kampf, J. Novotny, C.-H. Shen and J. Trnka, On-Shell Recursion Relations for Effective Field Theories, Phys. Rev. Lett.116 (2016) 041601 [arXiv:1509.03309] [INSPIRE].CrossRefADSGoogle Scholar
  6. [6]
    I. Low and Z. Yin, Soft Bootstrap and Effective Field Theories, arXiv:1904.12859 [INSPIRE].
  7. [7]
    C. Cheung, K. Kampf, J. Novotny, C.-H. Shen, J. Trnka and C. Wen, Vector Effective Field Theories from Soft Limits, Phys. Rev. Lett.120 (2018) 261602 [arXiv:1801.01496] [INSPIRE].CrossRefADSGoogle Scholar
  8. [8]
    H. Elvang, M. Hadjiantonis, C.R.T. Jones and S. Paranjape, Soft Bootstrap and Supersymmetry, JHEP01 (2019) 195 [arXiv:1806.06079] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  9. [9]
    H. Elvang, M. Hadjiantonis, C.R.T. Jones and S. Paranjape, On the Supersymmetrization of Galileon Theories in Four Dimensions, Phys. Lett.B 781 (2018) 656 [arXiv:1712.09937] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  10. [10]
    R. Britto, F. Cachazo and B. Feng, New recursion relations for tree amplitudes of gluons, Nucl. Phys.B 715 (2005) 499 [hep-th/0412308] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  11. [11]
    R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett.94 (2005) 181602 [hep-th/0501052] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  12. [12]
    N. Arkani-Hamed, F. Cachazo and J. Kaplan, What is the Simplest Quantum Field Theory?, JHEP09 (2010) 016 [arXiv:0808.1446] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  13. [13]
    S.L. Adler, Consistency conditions on the strong interactions implied by a partially conserved axial vector current, Phys. Rev.137 (1965) B1022 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  14. [14]
    S.L. Adler, Consistency conditions on the strong interactions implied by a partially conserved axial-vector current. II, Phys. Rev.139 (1965) B1638 [INSPIRE].
  15. [15]
    P. Creminelli, M. Serone and E. Trincherini, Non-linear Representations of the Conformal Group and Mapping of Galileons, JHEP10 (2013) 040 [arXiv:1306.2946] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  16. [16]
    R.H. Boels and W. Wormsbecher, Spontaneously broken conformal invariance in observables, arXiv:1507.08162 [INSPIRE].
  17. [17]
    P. Di Vecchia, R. Marotta, M. Mojaza and J. Nohle, New soft theorems for the gravity dilaton and the Nambu-Goldstone dilaton at subsubleading order, Phys. Rev.D 93 (2016) 085015 [arXiv:1512.03316] [INSPIRE].
  18. [18]
    M. Bianchi, A.L. Guerrieri, Y.-t. Huang, C.-J. Lee and C. Wen, Exploring soft constraints on effective actions, JHEP10 (2016) 036 [arXiv:1605.08697] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  19. [19]
    S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 1., Phys. Rev.177 (1969) 2239 [INSPIRE].
  20. [20]
    C.G. Callan Jr., S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 2., Phys. Rev.177 (1969) 2247 [INSPIRE].
  21. [21]
    D.V. Volkov, Phenomenological Lagrangians, Fiz. Elem. Chast. Atom. Yadra4 (1973) 3.MathSciNetGoogle Scholar
  22. [22]
    E.A. Ivanov and V.I. Ogievetsky, The Inverse Higgs Phenomenon in Nonlinear Realizations, Teor. Mat. Fiz.25 (1975) 164 [INSPIRE].CrossRefMathSciNetGoogle Scholar
  23. [23]
    M.P. Bogers and T. Brauner, Lie-algebraic classification of effective theories with enhanced soft limits, JHEP05 (2018) 076 [arXiv:1803.05359] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  24. [24]
    M.P. Bogers and T. Brauner, Geometry of Multiflavor Galileon-Like Theories, Phys. Rev. Lett.121 (2018) 171602 [arXiv:1802.08107] [INSPIRE].CrossRefADSGoogle Scholar
  25. [25]
    R. Klein, E. Malek, D. Roest and D. Stefanyszyn, No-go theorem for a gauge vector as a spacetime Goldstone mode, Phys. Rev.D 98 (2018) 065001 [arXiv:1806.06862] [INSPIRE].
  26. [26]
    D. Roest, D. Stefanyszyn and P. Werkman, An Algebraic Classification of Exceptional EFTs, JHEP08 (2019) 081 [arXiv:1903.08222] [INSPIRE].CrossRefADSzbMATHGoogle Scholar
  27. [27]
    J. Bonifacio, K. Hinterbichler, A. Joyce and R.A. Rosen, Shift Symmetries in (Anti) de Sitter Space, JHEP02 (2019) 178 [arXiv:1812.08167] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  28. [28]
    E. Pajer and D. Stefanyszyn, Symmetric Superfluids, JHEP06 (2019) 008 [arXiv:1812.05133] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  29. [29]
    J. Goldstone, A. Salam and S. Weinberg, Broken Symmetries, Phys. Rev.127 (1962) 965 [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  30. [30]
    I. Low and A.V. Manohar, Spontaneously broken space-time symmetries and Goldstone’s theorem, Phys. Rev. Lett.88 (2002) 101602 [hep-th/0110285] [INSPIRE].CrossRefADSGoogle Scholar
  31. [31]
    K. Hinterbichler and A. Joyce, Goldstones with Extended Shift Symmetries, Int. J. Mod. Phys.D 23 (2014) 1443001 [arXiv:1404.4047] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  32. [32]
    A. Nicolis, R. Rattazzi and E. Trincherini, The Galileon as a local modification of gravity, Phys. Rev.D 79 (2009) 064036 [arXiv:0811.2197] [INSPIRE].
  33. [33]
    G. Goon, K. Hinterbichler, A. Joyce and M. Trodden, Galileons as Wess-Zumino Terms, JHEP06 (2012) 004 [arXiv:1203.3191] [INSPIRE].CrossRefADSGoogle Scholar
  34. [34]
    M. Born and L. Infeld, Foundations of the new field theory, Proc. Roy. Soc. Lond.A 144 (1934) 425 [INSPIRE].CrossRefADSzbMATHGoogle Scholar
  35. [35]
    P.A.M. Dirac, An Extensible model of the electron, Proc. Roy. Soc. Lond.A 268 (1962) 57 [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  36. [36]
    K. Hinterbichler and A. Joyce, Hidden symmetry of the Galileon, Phys. Rev.D 92 (2015) 023503 [arXiv:1501.07600] [INSPIRE].
  37. [37]
    M. Carrillo González, R. Penco and M. Trodden, Radiation of scalar modes and the classical double copy, JHEP11 (2018) 065 [arXiv:1809.04611] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  38. [38]
    J. Novotny, Geometry of special Galileons, Phys. Rev.D 95 (2017) 065019 [arXiv:1612.01738] [INSPIRE].
  39. [39]
    D.V. Volkov and V.P. Akulov, Is the Neutrino a Goldstone Particle?, Phys. Lett.B 46 (1973) 109 [INSPIRE].CrossRefADSGoogle Scholar
  40. [40]
    R. Kallosh, A. Karlsson and D. Murli, Origin of Soft Limits from Nonlinear Supersymmetry in Volkov-Akulov Theory, JHEP03 (2017) 081 [arXiv:1609.09127] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  41. [41]
    B. Bellazzini, Softness and amplitudes’ positivity for spinning particles, JHEP02 (2017) 034 [arXiv:1605.06111] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  42. [42]
    W.-M. Chen, Y.-t. Huang and C. Wen, New Fermionic Soft Theorems for Supergravity Amplitudes, Phys. Rev. Lett.115 (2015) 021603 [arXiv:1412.1809] [INSPIRE].
  43. [43]
    E.A. Ivanov and A.A. Kapustnikov, General Relationship Between Linear and Nonlinear Realizations of Supersymmetry, J. Phys.A 11 (1978) 2375 [INSPIRE].ADSGoogle Scholar
  44. [44]
    E.A. Ivanov and A.A. Kapustnikov, The nonlinear realization structure of models with spontaneously broken supersymmetry, J. Phys.G 8 (1982) 167 [INSPIRE].CrossRefADSGoogle Scholar
  45. [45]
    A.L. Guerrieri, Y.-t. Huang, Z. Li and C. Wen, On the exactness of soft theorems, JHEP12 (2017) 052 [arXiv:1705.10078] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  46. [46]
    S. Endlich, A. Nicolis and R. Penco, Ultraviolet completion without symmetry restoration, Phys. Rev.D 89 (2014) 065006 [arXiv:1311.6491] [INSPIRE].
  47. [47]
    M.T. Grisaru, H.N. Pendleton and P. van Nieuwenhuizen, Supergravity and the S Matrix, Phys. Rev.D 15 (1977) 996 [INSPIRE].ADSGoogle Scholar
  48. [48]
    M.T. Grisaru and H.N. Pendleton, Some Properties of Scattering Amplitudes in Supersymmetric Theories, Nucl. Phys.B 124 (1977) 81 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  49. [49]
    H. Elvang, D.Z. Freedman and M. Kiermaier, Solution to the Ward Identities for Superamplitudes, JHEP10 (2010) 103 [arXiv:0911.3169] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  50. [50]
    J. Wess and J. Bagger, Supersymmetry and Supergravity, Princeton Series in Physics, Princeton University Press, Princeton U.S.A. (1992).zbMATHGoogle Scholar
  51. [51]
    P.J. Olver, Applications of Lie Groups to Differential Equations, Springer, Heidelberg Germany (1986).CrossRefzbMATHGoogle Scholar
  52. [52]
    R. Klein, D. Roest and D. Stefanyszyn, Spontaneously Broken Spacetime Symmetries and the Role of Inessential Goldstones, JHEP10 (2017) 051 [arXiv:1709.03525] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  53. [53]
    I.N. McArthur, Nonlinear realizations of symmetries and unphysical Goldstone bosons, JHEP11 (2010) 140 [arXiv:1009.3696] [INSPIRE].CrossRefADSzbMATHGoogle Scholar
  54. [54]
    G. Goon, K. Hinterbichler, A. Joyce and M. Trodden, Galileons as Wess-Zumino Terms, JHEP06 (2012) 004 [arXiv:1203.3191] [INSPIRE].CrossRefADSGoogle Scholar
  55. [55]
    L.V. Delacrétaz, S. Endlich, A. Monin, R. Penco and F. Riva, (Re-)Inventing the Relativistic Wheel: Gravity, Cosets and Spinning Objects, JHEP11 (2014) 008 [arXiv:1405.7384] [INSPIRE].
  56. [56]
    J. Bagger and A. Galperin, Matter couplings in partially broken extended supersymmetry, Phys. Lett.B 336 (1994) 25 [hep-th/9406217] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  57. [57]
    J. Bagger and A. Galperin, A New Goldstone multiplet for partially broken supersymmetry, Phys. Rev.D 55 (1997) 1091 [hep-th/9608177] [INSPIRE].ADSMathSciNetGoogle Scholar
  58. [58]
    S. Bellucci, E. Ivanov and S. Krivonos, Goldstone superfield actions in AdS 5backgrounds, Nucl. Phys.B 672 (2003) 123 [hep-th/0212295] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  59. [59]
    J. Khoury, J.-L. Lehners and B. Ovrut, Supersymmetric P(X,𝜙) and the Ghost Condensate, Phys. Rev.D 83 (2011) 125031 [arXiv:1012.3748] [INSPIRE].ADSGoogle Scholar
  60. [60]
    D. Roest, P. Werkman and Y. Yamada, Internal Supersymmetry and Small-field Goldstini, JHEP05 (2018) 190 [arXiv:1710.02480] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  61. [61]
    K. Hinterbichler, M. Trodden and D. Wesley, Multi-field galileons and higher co-dimension branes, Phys. Rev.D 82 (2010) 124018 [arXiv:1008.1305] [INSPIRE].ADSGoogle Scholar
  62. [62]
    A. Padilla, P.M. Saffin and S.-Y. Zhou, Bi-galileon theory I: Motivation and formulation, JHEP12 (2010) 031 [arXiv:1007.5424] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  63. [63]
    M. Roček and A.A. Tseytlin, Partial breaking of global D = 4 supersymmetry, constrained superfields and three-brane actions, Phys. Rev.D 59 (1999) 106001 [hep-th/9811232] [INSPIRE].ADSGoogle Scholar
  64. [64]
    F. Farakos, C. Germani and A. Kehagias, On ghost-free supersymmetric galileons, JHEP11 (2013) 045 [arXiv:1306.2961] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  65. [65]
    C. Deffayet, A.E. Gümrükçüoğlu, S. Mukohyama and Y. Wang, A no-go theorem for generalized vector Galileons on flat spacetime, JHEP04 (2014) 082 [arXiv:1312.6690] [INSPIRE].CrossRefADSGoogle Scholar
  66. [66]
    J. Bagger and A. Galperin, The Tensor Goldstone multiplet for partially broken supersymmetry, Phys. Lett.B 412 (1997) 296 [hep-th/9707061] [INSPIRE].CrossRefADSGoogle Scholar
  67. [67]
    S. Bellucci, E. Ivanov and S. Krivonos, AdS/CFT equivalence transformation, Phys. Rev.D 66 (2002) 086001 [Erratum ibid.D 67 (2003) 049901] [hep-th/0206126] [INSPIRE].
  68. [68]
    S. Bellucci, E. Ivanov and S. Krivonos, Goldstone superfield actions for partially broken AdS 5supersymmetry, Phys. Lett.B 558 (2003) 182 [hep-th/0212142] [INSPIRE].CrossRefADSzbMATHGoogle Scholar
  69. [69]
    R. Deen and B. Ovrut, Supergravitational Conformal Galileons, JHEP08 (2017) 014 [arXiv:1705.06729] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  70. [70]
    A. Achucarro, J.M. Evans, P.K. Townsend and D.L. Wiltshire, Super p-Branes, Phys. Lett.B 198 (1987) 441 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  71. [71]
    J.A. De Azcarraga and P.K. Townsend, Superspace Geometry and Classification of Supersymmetric Extended Objects, Phys. Rev. Lett.62 (1989) 2579 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  72. [72]
    A. Nicolis, R. Penco, F. Piazza and R. Rattazzi, Zoology of condensed matter: Framids, ordinary stuff, extra-ordinary stuff, JHEP06 (2015) 155 [arXiv:1501.03845] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Diederik Roest
    • 1
  • David Stefanyszyn
    • 1
    Email author
  • Pelle Werkman
    • 1
  1. 1.Van Swinderen Institute for Particle Physics and GravityUniversity of GroningenGroningenThe Netherlands

Personalised recommendations