Journal of High Energy Physics

, 2019:66 | Cite as

Quantum impurity models from conformal field theory

  • Ying-Hai WuEmail author
  • Hong-Hao Tu
Open Access
Regular Article - Theoretical Physics


The coupling between localized magnetic moments and itinerant electrons presents a plethora of interesting physics. The low-energy physics of some quantum impurity systems can be described using conformal field theory (CFT). In this paper, the connection between quantum impurity models and CFT is further strengthened as we construct a class of exactly solvable models with ground states given by CFT correlators. The method developed here is completely analytical and can be applied to fermions with an arbitrary number of colors and multiple impurities. Numerical calculations are performed to characterize certain aspects of our models for which we do not have analytical results.


Conformal Field Theory Field Theories in Lower Dimensions 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    A.C. Hewson, The kondo problem to heavy fermions, Cambridge University Press, Cambridge U.K. (1997).Google Scholar
  2. [2]
    J. Kondo, Resistance minimum in dilute magnetic alloys, Prog. Theor. Phys.32 (1964) 37 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    B. Coqblin and J.R. Schrieffer, Exchange interaction in alloys with cerium impurities, Phys. Rev.185 (1969) 847 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    L. Borda et al., SU(4) Fermi liquid state and spin filtering in a double quantum dot system, Phys. Rev. Lett.90 (2003) 026602 [cond-mat/0207001].
  5. [5]
    C. Mora, Fermi-liquid theory for SU(n) Kondo model, Phys. Rev.B 80 (2009) 125304 [arXiv:0905.3999].ADSCrossRefGoogle Scholar
  6. [6]
    A. Carmi, Y. Oreg and M. Berkooz, Realization of SU(N ) Kondo effect in strong magnetic field, Phys. Rev. Lett.106 (2011) 106401 [arXiv:1006.2019] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    P. Nozières and A. Blandin, Kondo effect in real metals, J. Physique41 (1980) 193.Google Scholar
  8. [8]
    V.J. Emery and S. Kivelson, Mapping of the two-channel Kondo problem to a resonant-level model, Phys. Rev.B 46 (1992) 10812.ADSCrossRefGoogle Scholar
  9. [9]
    P. Coleman, L.B. Ioffe and A.M. Tsvelik, Simple formulation of the two-channel kondo model, Phys. Rev.B 52 (1995) 6611.ADSCrossRefGoogle Scholar
  10. [10]
    A. Zawadowski, J. von Delft and D.C. Ralph, Dephasing in metals by two-level systems in the 2-channel kondo regime, Phys. Rev. Lett.83 (1999) 2632 [cond-mat/9902176].ADSCrossRefGoogle Scholar
  11. [11]
    Y. Oreg and D. Goldhaber-Gordon, Two-channel kondo effect in a modified single electron transistor, Phys. Rev. Lett.90 (2003) 136602.ADSCrossRefGoogle Scholar
  12. [12]
    B. Beri and N.R. Cooper, Topological Kondo effect with Majorana fermions, Phys. Rev. Lett.109 (2012) 156803 [arXiv:1206.2224] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    N. Crampé and A. Trombettoni, Quantum spins on star graphs and the Kondo model, Nucl. Phys.B 871 (2013) 526 [arXiv:1210.7143] [INSPIRE].
  14. [14]
    A.M. Tsvelik, Majorana fermion realization of a two-channel Kondo effect in a junction of three quantum Ising chains, Phys. Rev. Lett.110 (2013) 147202 [arXiv:1211.3481] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    A. Altland, B. Béri, R. Egger and A.M. Tsvelik, Multichannel Kondo impurity dynamics in a Majorana device, Phys. Rev. Lett.113 (2014) 076401 [arXiv:1312.3802] [INSPIRE].
  16. [16]
    E. Eriksson, C. Mora, A. Zazunov and R. Egger, Non-Fermi liquid manifold in a Majorana device, Phys. Rev. Lett.113 (2014) 076404 [arXiv:1404.5499] [INSPIRE].
  17. [17]
    O. Kashuba and C. Timm, Topological Kondo effect in transport through a superconducting wire with multiple Majorana end states, Phys. Rev. Lett.114 (2015) 116801 [arXiv:1407.1145] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    C.J. Lindner, F.B. Kugler, H. Schoeller and J. von Delft, Flavor fluctuations in three-level quantum dots: generic SU(3) kondo fixed point in equilibrium and non-Kondo fixed points in nonequilibrium, Phys. Rev.B 97 (2018) 235450 [arXiv:1802.09976] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    K. Hattori, K. Itakura, S. Ozaki and S. Yasui, QCD Kondo effect: quark matter with heavy-flavor impurities, Phys. Rev.D 92 (2015) 065003 [arXiv:1504.07619].
  20. [20]
    T. Kimura and S. Ozaki, Conformal field theory analysis of the QCD Kondo effect, Phys. Rev.D 99 (2019) 014040 [arXiv:1806.06486] [INSPIRE].
  21. [21]
    D. Goldhaber-Gordon et al., Kondo effect in a single-electron transistor, Nature391 (1998) 156.ADSCrossRefGoogle Scholar
  22. [22]
    S.M. Cronenwett, T.H. Oosterkamp and L.P. Kouwenhoven, A tunable Kondo effect in quantum dots, Science281 (1998) 540 [cond-mat/9804211].
  23. [23]
    V. Madhavan et al., Tunneling into a single magnetic atom: spectroscopic evidence of the Kondo resonance, Science280 (1998) 567.ADSCrossRefGoogle Scholar
  24. [24]
    J. Nygard, D.H. Cobden and P.E. Lindelof, Kondo physics in carbon nanotubes, Nature408 (2000) 342.ADSCrossRefGoogle Scholar
  25. [25]
    P. Jarillo-Herrero et al., Orbital Kondo effect in carbon nanotubes, Nature434 (2005) 484.ADSCrossRefGoogle Scholar
  26. [26]
    R.M. Potok et al., Observation of the two-channel Kondo effect, Nature446 (2007) 167.ADSCrossRefGoogle Scholar
  27. [27]
    L.A. Landau, E. Cornfeld and E. Sela, Charge fractionalization in the two-channel Kondo effect, Phys. Rev. Lett.120 (2018) 186801 [arXiv:1710.03030] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    A. Keller et al., Emergent su (4) Kondo physics in a spin-charge-entangled double quantum dot, Nature Phys.10 (2014) 145.ADSCrossRefGoogle Scholar
  29. [29]
    A.J. Keller et al., Universal Fermi liquid crossover and quantum criticality in a mesoscopic system, Nature526 (2015) 237.ADSCrossRefGoogle Scholar
  30. [30]
    Z. Iftikhar et al., Tunable quantum criticality and super-ballistic transport in a “charge” Kondo circuit, Science360 (2018) 1315.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  31. [31]
    K.G. Wilson, The renormalization group: critical phenomena and the Kondo problem, Rev. Mod. Phys.47 (1975) 773 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    P. Nozières, A “Fermi-liquid” description of the kondo problem at low temperatures, J. Low Temp. Phys.17 (1974) 31.Google Scholar
  33. [33]
    I. Affleck, A current algebra approach to the Kondo effect, Nucl. Phys.B 336 (1990) 517 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    I. Affleck and A.W.W. Ludwig, The Kondo effect, conformal field theory and fusion rules, Nucl. Phys.B 352 (1991) 849 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    A.W.W. Ludwig and I. Affleck, Exact asymptotic three-dimensional, space and time dependent Green’s functions in the multichannel Kondo effect, Phys. Rev. Lett.67 (1991) 3160 [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  36. [36]
    I. Affleck, Conformal field theory approach to the kondo effect, cond-mat/9512099.
  37. [37]
    J.M. Maldacena and A.W. Ludwig, Majorana fermions, exact mapping between quantum impurity fixed points with four bulk fermion species, and solution of the unitarity puzzle, Nucl. Phys.B 506 (1997) 565 [cond-mat/9502109].
  38. [38]
    J. von Delft, G. Zaránd and M. Fabrizio, Finite-size bosonization of 2-channel kondo model: a bridge between numerical renormalization group and conformal field theory, Phys. Rev. Lett.81 (1998) 196 [cond-mat/9807078].ADSCrossRefGoogle Scholar
  39. [39]
    N. Andrei, Diagonalization of the Kondo Hamiltonian, Phys. Rev. Lett.45 (1980) 379 [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    P.B. Wiegmann, Exact solution of the s-d exchange model (Kondo problem), J. Phys.C 14 (1981) 1463.ADSGoogle Scholar
  41. [41]
    N. Andrei, K. Furuya and J.H. Lowenstein, Solution of the Kondo Problem, Rev. Mod. Phys.55 (1983) 331 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    A.M. Tsvelik and P. B. Wiegmann, Exact results in the theory of magnetic alloys, Adv. Phys.32 (1983) 453.ADSCrossRefGoogle Scholar
  43. [43]
    N. Andrei and H. Johannesson, Heisenberg chain with impurities (an integrable model), Phys. Lett.A 100 (1984) 108.ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    P. Schlottmann, Bethe-ansatz solution of the anderson model of a magnetic impurity with orbital degeneracy, Phys. Rev. Lett.50 (1983) 1697.ADSCrossRefGoogle Scholar
  45. [45]
    P. Schlottmann, Some exact results for dilute mixed-valent and heavy-fermion systems, Phys. Rept.181 (1989) 1.ADSCrossRefGoogle Scholar
  46. [46]
    P. Schlottmann, Impurity-induced critical behaviour in antiferromagnetic heisenberg chains, J. Phys. Condens. Matter3 (1991) 6617.ADSCrossRefGoogle Scholar
  47. [47]
    E.S. Sørensen, S. Eggert and I. Affleck, Integrable versus non-integrable spin chain impurity models, J. Phys.A 26 (1993) 6757 [cond-mat/9306003].
  48. [48]
    H. Frahm and A.A. Zvyagin, The open spin chain with impurity: an exact solution, J. Phys.: Condens. Matter9 (1997) 9939.Google Scholar
  49. [49]
    Y. Wang, J. Dai, Z. Hu and F.C. Pu, Exact results for a Kondo problem in a one-dimensional t-J model, Phys. Rev. Lett.79 (1997) 1901.ADSCrossRefGoogle Scholar
  50. [50]
    H.-H. Tu and Y.-H. Wu, Exactly solvable quantum impurity model with inverse-square interactions, Phys. Rev. Lett.123 (2019) 066406 [arXiv:1804.06488] [INSPIRE].
  51. [51]
    G.W. Moore and N. Read, Nonabelions in the fractional quantum Hall effect, Nucl. Phys.B 360 (1991) 362 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  52. [52]
    N. Read and E. Rezayi, Beyond paired quantum Hall states: Parafermions and incompressible states in the first excited Landau level, Phys. Rev.B 59 (1999) 8084 [cond-mat/9809384] [INSPIRE].
  53. [53]
    E. Ardonne and K. Schoutens, New class of non-abelian spin-singlet quantum Hall states, Phys. Rev. Lett.82 (1999) 5096 [cond-mat/9811352].
  54. [54]
    T.H. Hansson, C.C. Chang, J.K. Jain and S. Viefers, Conformal Field Theory of Composite Fermions, Phys. Rev. Lett.98 (2007) 076801 [cond-mat/0603125] [INSPIRE].
  55. [55]
    Y. Tournois and M. Hermanns, Conformal field theory construction for non-Abelian hierarchy wave functions, Phys. Rev.B 96 (2017) 245107 [arXiv:1708.00763].ADSCrossRefGoogle Scholar
  56. [56]
    T. H. Hansson, M. Hermanns, S. H. Simon, and S. F. Viefers, Quantum Hall physics: hierarchies and conformal field theory techniques, Rev. Mod. Phys.89 (2017) 025005 [arXiv:1601.01697].
  57. [57]
    J.I. Cirac and G. Sierra, Infinite matrix product states, conformal field theory and the Haldane-Shastry model, Phys. Rev.B 81 (2010) 104431 [arXiv:0911.3029] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    A.E.B. Nielsen, G. Sierra and J.I. Cirac, Violation of the area law and long-range correlations in infinite-dimensional-matrix product states, Phys. Rev.A 83 (2011) 053807 [arXiv:1103.2205].
  59. [59]
    H.-H. Tu, A.E.B. Nielsen and G. Sierra, Quantum spin models for the SU(n)1 Wess–Zumino–Witten model, Nucl. Phys.B 886 (2014) 328 [arXiv:1405.2950] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  60. [60]
    H.-H. Tu and G. Sierra, Infinite matrix product states, boundary conformal field theory and the open Haldane-Shastry model, Phys. Rev.B 92 (2015) 041119 [arXiv:1504.07224] [INSPIRE].
  61. [61]
    B. Basu-Mallick, F. Finkel, and A. González-López, Integrable open spin chains related to infinite matrix product states, Phys. Rev.B 93 (2016) 155154 [arXiv:1511.08613].ADSCrossRefGoogle Scholar
  62. [62]
    J.-M. Stéphan and F. Pollmann, Full counting statistics in the Haldane-Shastry chain, Phys. Rev.B 95 (2017) 035119 [arXiv:1608.06856] [INSPIRE].
  63. [63]
    A. Hackenbroich and H.-H. Tu, Parent Hamiltonians for lattice Halperin states from free-boson conformal field theories, Nucl. Phys.B 916 (2017) 1 [arXiv:1611.01333] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  64. [64]
    I. Affleck and A.W.W. Ludwig, The Fermi edge singularity and boundary condition changing operators, J. Phys.A 27 (1994) 5375 [cond-mat/9405057].
  65. [65]
    S.R. White, Density matrix formulation for quantum renormalization groups, Phys. Rev. Lett.69 (1992) 2863 [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    F. Verstraete, D. Porras and J.I. Cirac, Density Matrix Renormalization Group and Periodic Boundary Conditions: A Quantum Information Perspective, Phys. Rev. Lett.93 (2004) 227205 [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    U. Schollwöck, The density-matrix renormalization group in the age of matrix product states, Ann. Phys.326 (2011) 96 [arXiv:1008.3477].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  68. [68]
    C. Hubig, I. P. McCulloch, and U. Schollwöck, Generic construction of efficient matrix product operators, Phys. Rev.B 95 (2017) 035129 [arXiv:1611.02498].
  69. [69]
    C. Hubig, I.P. McCulloch, U. Schollwöck and F.A. Wolf, Strictly single-site dmrg algorithm with subspace expansion, Phys. Rev.B 91 (2015) 155115 [arXiv:1501.05504].
  70. [70]
    V. Barzykin and I. Affleck, Screening cloud in the k-channel kondo model: perturbative and large-k results, Phys. Rev.B 57 (1998) 432 [cond-mat/9708039].
  71. [71]
    T. Hand, J. Kroha, and H. Monien, Spin correlations and finite-size effects in the one-dimensional Kondo box, Phys. Rev. Lett.97 (2006) 136604 [cond-mat/0602352].
  72. [72]
    L. Borda, Kondo screening cloud in a one-dimensional wire: numerical renormalization group study, Phys. Rev.B 75 (2007) 041307.Google Scholar
  73. [73]
    A. Holzner et al., Kondo screening cloud in the single-impurity Anderson model: a density matrix renormalization group study, Phys. Rev.B 80 (2009) 205114 [arXiv:0906.2933].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.School of Physics and Wuhan National High Magnetic Field CenterHuazhong University of Science and TechnologyWuhanChina
  2. 2.Institut für Theoretische PhysikTechnische Universität DresdenDresdenGermany

Personalised recommendations