Journal of High Energy Physics

, 2019:65 | Cite as

Dynamical vector resonances from the EChL in VBS at the LHC: the WW case

  • R.L. Delgado
  • C. Garcia-GarciaEmail author
  • M.J. Herrero
Open Access
Regular Article - Theoretical Physics


In this work we study the phenomenology of the process pp → W+Wjj at the LHC, in the scenario of the resonant vector boson scattering subprocess W+W→ W+W which we describe within the effective field theory framework of the Electroweak Chiral Lagrangian. We assume a strongly interacting electroweak symmetry breaking sector in which dynamically generated resonances with masses in the TeV scale appear as poles in the Electroweak Chiral Lagrangian amplitudes unitarized with the Inverse Amplitude Method. The relevant resonance here, V0, is the neutral component of the triplet of vector resonances which are known to emerge dynamically at the TeV scale for specific values of the Electroweak Chiral Lagrangian parameters. With the aim of studying the production and possible observation of V0 at the LHC, via the resonant W+W→ W+W scatter- ing, a MadGraph 5 UFO model has been developed employing a phenomenological Proca Lagrangian as a practical tool to mimic the correct V0 properties that are predicted with the Inverse Amplitude Method. We choose to study the fully hadronic decay channel of the final gauge bosons W W → J (jj)J (jj) since it leads to larger event rates and because in the alternative leptonic decay channels the presence of neutrinos complicates the re- construction of the resonance properties. In this context, the 2 boosted jets from the W hadronic decays, jj, are detected as a single fat jet, J , due to their extreme collinearity. We perform a dedicated analysis of the sensitivity to these vector resonances V0 with masses between 1.5 and 2.5 TeV at the LHC with \( \sqrt{s} \) = 13 TeV and the planned high luminosity of 3000 fb1, paying special attention to the study of efficient cuts to extract the resonant vector boson fusion signal from the QCD background, which clearly represents the main challenge of this search.


Beyond Standard Model Chiral Lagrangians Effective Field Theories Higgs Physics 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    T. Appelquist and C.W. Bernard, Strongly interacting Higgs bosons, Phys. Rev.D 22 (1980) 200 [INSPIRE].ADSGoogle Scholar
  2. [2]
    A.C. Longhitano, Heavy Higgs bosons in the Weinberg-Salam model, Phys. Rev.D 22 (1980) 1166 [INSPIRE].ADSGoogle Scholar
  3. [3]
    A.C. Longhitano, Low-energy impact of a heavy Higgs boson sector, Nucl. Phys.B 188 (1981) 118 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    M.S. Chanowitz and M.K. Gaillard, The TeV physics of strongly interacting W’s and Z’s, Nucl. Phys.B 261 (1985) 379 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    O. Cheyette and M.K. Gaillard, The effective one loop action in the strongly interacting standard electroweak theory, Phys. Lett.B 197 (1987) 205 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    A. Dobado and M.J. Herrero, Phenomenological Lagrangian approach to the symmetry breaking sector of the standard model, Phys. Lett.B 228 (1989) 495 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    A. Dobado and M.J. Herrero, Testing the hypothesis of strongly interacting longitudinal weak bosons in electron-positron collisions at TeV energies, Phys. Lett.B 233 (1989) 505 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    A. Dobado, M.J. Herrero and J. Terron, The role of chiral lagrangians in strongly interacting W (l)W (l) signals at pp supercolliders, Z. Phys.C 50 (1991) 205 [INSPIRE].Google Scholar
  9. [9]
    A. Dobado, M.J. Herrero and J. Terron, W ±Z 0signals from the strongly interacting symmetry breaking sector, Z. Phys.C 50 (1991) 465 [INSPIRE].Google Scholar
  10. [10]
    A. Dobado, D. Espriu and M.J. Herrero, Chiral Lagrangians as a tool to probe the symmetry breaking sector of the SM at LEP, Phys. Lett.B 255 (1991) 405 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    D. Espriu and M.J. Herrero, Chiral Lagrangians and precision tests of the symmetry breaking sector of the Standard Model, Nucl. Phys.B 373 (1992) 117 [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    F. Feruglio, The chiral approach to the electroweak interactions, Int. J. Mod. Phys.A 8 (1993) 4937 [hep-ph/9301281] [INSPIRE].
  13. [13]
    A. Dobado et al., Learning about the strongly interacting symmetry breaking sector at LHC, Phys. Lett.B 352 (1995) 400 [hep-ph/9502309] [INSPIRE].
  14. [14]
    A. Dobado, M.J. Herrero, J.R. Pelaez and E. Ruiz Morales, CERN LHC sensitivity to the resonance spectrum of a minimal strongly interacting electroweak symmetry breaking sector, Phys. Rev.D 62 (2000) 055011 [hep-ph/9912224] [INSPIRE].
  15. [15]
    R. Alonso et al., The effective chiral lagrangian for a light dynamical “Higgs particle”, Phys. Lett.B 722 (2013) 330 [Erratum ibid.B 726 (2013) 926] [arXiv:1212.3305] [INSPIRE].
  16. [16]
    G. Buchalla, O. Catà and C. Krause, Complete electroweak chiral lagrangian with a light Higgs at NLO, Nucl. Phys.B 880 (2014) 552 [Erratum ibid.B 913 (2016) 475] [arXiv:1307.5017] [INSPIRE].
  17. [17]
    D. Espriu and B. Yencho, Longitudinal WW scattering in light of the “Higgs boson” discovery, Phys. Rev.D 87 (2013) 055017 [arXiv:1212.4158] [INSPIRE].
  18. [18]
    R.L. Delgado, A. Dobado and F.J. Llanes-Estrada, Light ‘Higgs’, yet strong interactions, J. Phys.G 41 (2014) 025002 [arXiv:1308.1629] [INSPIRE].
  19. [19]
    R.L. Delgado, A. Dobado and F.J. Llanes-Estrada, One-loop W LW Land Z LZ Lscattering from the electroweak chiral Lagrangian with a light Higgs-like scalar, JHEP02 (2014) 121 [arXiv:1311.5993] [INSPIRE].Google Scholar
  20. [20]
    I. Brivio et al., Disentangling a dynamical Higgs, JHEP03 (2014) 024 [arXiv:1311.1823] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    D. Espriu, F. Mescia and B. Yencho, Radiative corrections to WL WL scattering in composite Higgs models, Phys. Rev.D 88 (2013) 055002 [arXiv:1307.2400] [INSPIRE].
  22. [22]
    D. Espriu and F. Mescia, Unitarity and causality constraints in composite Higgs models, Phys. Rev.D 90 (2014) 015035 [arXiv:1403.7386] [INSPIRE].
  23. [23]
    R.L. Delgado, A. Dobado, M.J. Herrero and J.J. Sanz-Cillero, One-loop γγ → \( {W}_L^{+}{W}_L^{-} \)and γγ → Z LZ Lfrom the electroweak chiral lagrangian with a light Higgs-like scalar, JHEP07 (2014) 149 [arXiv:1404.2866] [INSPIRE].Google Scholar
  24. [24]
    G. Buchalla, O. Catà, A. Celis and C. Krause, Fitting Higgs data with nonlinear effective theory, Eur. Phys. J.C 76 (2016) 233 [arXiv:1511.00988] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    P. Arnan, D. Espriu and F. Mescia, Interpreting a 2 TeV resonance in WW scattering, Phys. Rev.D 93 (2016) 015020 [arXiv:1508.00174] [INSPIRE].
  26. [26]
    G. Buchalla et al., Complete one-loop renormalization of the Higgs-electroweak chiral lagrangian, Nucl. Phys.B 928 (2018) 93 [arXiv:1710.06412] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    J.A. Oller, E. Oset and J.R. Pelaez, Nonperturbative approach to effective chiral Lagrangians and meson interactions, Phys. Rev. Lett.80 (1998) 3452 [hep-ph/9803242] [INSPIRE].
  28. [28]
    A. Gomez Nicola and J.R. Pelaez, Meson meson scattering within one loop chiral perturbation theory and its unitarization, Phys. Rev.D 65 (2002) 054009 [hep-ph/0109056] [INSPIRE].
  29. [29]
    R.L. Delgado et al., Production of vector resonances at the LHC via WZ-scattering: a unitarized EChL analysis, JHEP11 (2017) 098 [arXiv:1707.04580] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    C. Garcia-Garcia, M. Herrero and R.A. Morales, Unitarization effects in EFT predictions of WZ scattering at the LHC, arXiv:1907.06668 [INSPIRE].
  31. [31]
    W.D. Goldberger, B. Grinstein and W. Skiba, Distinguishing the Higgs boson from the dilaton at the Large Hadron Collider, Phys. Rev. Lett.100 (2008) 111802 [arXiv:0708.1463] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    J. Fan, W.D. Goldberger, A. Ross and W. Skiba, Standard model couplings and collider signatures of a light scalar, Phys. Rev.D 79 (2009) 035017 [arXiv:0803.2040] [INSPIRE].
  33. [33]
    L. Vecchi, Phenomenology of a light scalar: the dilaton, Phys. Rev.D 82 (2010) 076009 [arXiv:1002.1721] [INSPIRE].
  34. [34]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    R. Frederix et al., The automation of next-to-leading order electroweak calculations, JHEP07 (2018) 185 [arXiv:1804.10017] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    R. Aoude and W. Shepherd, Jet substructure measurements of interference in non-interfering SMEFT effects, JHEP08 (2019) 009 [arXiv:1902.11262] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP05 (2006) 026 [hep-ph/0603175] [INSPIRE].
  38. [38]
    DELPHES 3 collaboration, DELPHES 3, a modular framework for fast simulation of a generic collider experiment, JHEP02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
  39. [39]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J.C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    M. Cacciari and G.P. Salam, Dispelling the N 3myth for the kt jet-finder, Phys. Lett.B 641 (2006) 57 [hep-ph/0512210] [INSPIRE].
  41. [41]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k tjet clustering algorithm, JHEP04 (2008) 063 [arXiv:0802.1189] [INSPIRE].Google Scholar
  42. [42]
    A. Abdesselam et al., Boosted objects: a probe of beyond the standard model physics, Eur. Phys. J.C 71 (2011) 1661 [arXiv:1012.5412] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    J. Thaler and K. Van Tilburg, Identifying boosted objects with N-subjettiness, JHEP03 (2011) 015 [arXiv:1011.2268] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    J. Thaler and K. Van Tilburg, Maximizing boosted top identification by minimizing N-subjettiness, JHEP02 (2012) 093 [arXiv:1108.2701] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    CMS collaboration, Search for massive resonances in dijet systems containing jets tagged as W or Z boson decays in pp collisions at \( \sqrt{s} \) = 8 TeV, JHEP08 (2014) 173 [arXiv:1405.1994] [INSPIRE].
  46. [46]
    ATLAS collaboration, Identification of boosted, hadronically decaying Wbosons and comparisons with ATLAS data taken at \( \sqrt{s} \) = 8 TeV, Eur. Phys. J.C 76 (2016) 154 [arXiv:1510.05821] [INSPIRE].
  47. [47]
    ATLAS collaboration, Search for high-mass diboson resonances with boson-tagged jets in proton-proton collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, JHEP12 (2015) 055 [arXiv:1506.00962] [INSPIRE].
  48. [48]
    J.J. Heinrich, Reconstruction of boosted W ±and Z 0bosons from fat jets, Master’s thesis, Niels Bohr Institute, Copenhagen, Denmark (2014).Google Scholar
  49. [49]
    ATLAS collaboration, Search for diboson resonances in hadronic final states in 139 fb 1of pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, JHEP09 (2019) 091 [arXiv:1906.08589] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Physik-Department T30fTechnische Universität München (TUM)GarchingGermany
  2. 2.Departamento de Física Teórica and Instituto de Física Teórica, IFT-UAM/CSICUniversidad Autónoma de MadridMadridSpain

Personalised recommendations