Advertisement

Journal of High Energy Physics

, 2019:56 | Cite as

Dualities of corner configurations and supersymmetric indices

  • Davide Gaiotto
  • Tadashi OkazakiEmail author
Open Access
Regular Article - Theoretical Physics
  • 53 Downloads

Abstract

We compute supersymmetric indices which count local operators at certain half-BPS interfaces and quarter-BPS junctions of interfaces in four-dimensional \( \mathcal{N} \) = 4 Super Yang-Mills theory. We use the indices as very stringent tests of a variety of string theory-inspired conjectures about the action of S-duality on such defects.

Keywords

Brane Dynamics in Gauge Theories Duality in Gauge Field Theories String Duality Supersymmetric Gauge Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    J. Kinney, J.M. Maldacena, S. Minwalla and S. Raju, An Index for 4 dimensional super conformal theories, Commun. Math. Phys.275 (2007) 209 [hep-th/0510251] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    C. Romelsberger, Counting chiral primaries in N = 1, d = 4 superconformal field theories, Nucl. Phys.B 747 (2006) 329 [hep-th/0510060] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    C. Romelsberger, Calculating the Superconformal Index and Seiberg Duality, arXiv:0707.3702 [INSPIRE].
  4. [4]
    D. Gaiotto and E. Witten, Supersymmetric Boundary Conditions in N = 4 Super Yang-Mills Theory, J. Statist. Phys.135 (2009) 789 [arXiv:0804.2902] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    D. Gaiotto and E. Witten, Janus Configurations, Chern-Simons Couplings, And The theta-Angle in N = 4 Super Yang-Mills Theory, JHEP06 (2010) 097 [arXiv:0804.2907] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    D. Gaiotto and E. Witten, S-duality of Boundary Conditions In N = 4 Super Yang-Mills Theory, Adv. Theor. Math. Phys.13 (2009) 721 [arXiv:0807.3720] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    S. Kim, The Complete superconformal index for N = 6 Chern-Simons theory, Nucl. Phys.B 821 (2009) 241 [Erratum ibid.B 864 (2012) 884] [arXiv:0903.4172] [INSPIRE].
  8. [8]
    Y. Imamura and S. Yokoyama, Index for three dimensional superconformal field theories with general R-charge assignments, JHEP04 (2011) 007 [arXiv:1101.0557] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    C. Krattenthaler, V.P. Spiridonov and G.S. Vartanov, Superconformal indices of three-dimensional theories related by mirror symmetry, JHEP06 (2011) 008 [arXiv:1103.4075] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    T. Dimofte, D. Gaiotto and S. Gukov, 3-Manifolds and 3d Indices, Adv. Theor. Math. Phys.17 (2013) 975 [arXiv:1112.5179] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  11. [11]
    D. Gang, E. Koh and K. Lee, Superconformal Index with Duality Domain Wall, JHEP10 (2012) 187 [arXiv:1205.0069] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    D. Gaiotto and M. Rapčák, Vertex Algebras at the Corner, JHEP01 (2019) 160 [arXiv:1703.00982] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    T. Creutzig and D. Gaiotto, Vertex Algebras for S-duality, arXiv:1708.00875 [INSPIRE].
  14. [14]
    E. Frenkel and D. Gaiotto, Quantum Langlands dualities of boundary conditions, D-modules and conformal blocks, arXiv:1805.00203 [INSPIRE].
  15. [15]
    H.-J. Chung and T. Okazaki, (2,2) and (0,4) supersymmetric boundary conditions in 3d \( \mathcal{N} \)= 4 theories and type IIB branes, Phys. Rev.D 96 (2017) 086005 [arXiv:1608.05363] [INSPIRE].
  16. [16]
    A. Hanany and T. Okazaki, (0,4) brane box models, JHEP03 (2019) 027 [arXiv:1811.09117] [INSPIRE].
  17. [17]
    K. Costello and D. Gaiotto, Vertex Operator Algebras and 3d \( \mathcal{N} \) = 4 gauge theories, JHEP05 (2019) 018 [arXiv:1804.06460] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    K. Costello, T. Creutzig and D. Gaiotto, Higgs and Coulomb branches from vertex operator algebras, JHEP03 (2019) 066 [arXiv:1811.03958] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  19. [19]
    A. Gadde, S. Gukov and P. Putrov, Walls, Lines and Spectral Dualities in 3d Gauge Theories, JHEP05 (2014) 047 [arXiv:1302.0015] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    T. Okazaki and S. Yamaguchi, Supersymmetric boundary conditions in three-dimensional N = 2 theories, Phys. Rev.D 87 (2013) 125005 [arXiv:1302.6593] [INSPIRE].ADSGoogle Scholar
  21. [21]
    T. Dimofte, D. Gaiotto and N.M. Paquette, Dual boundary conditions in 3d SCFT’s, JHEP05 (2018) 060 [arXiv:1712.07654] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    B. Assel, C. Bachas, J. Estes and J. Gomis, Holographic Duals of D = 3 N = 4 Superconformal Field Theories, JHEP08 (2011) 087 [arXiv:1106.4253] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    O. Aharony, L. Berdichevsky, M. Berkooz and I. Shamir, Near-horizon solutions for D3-branes ending on 5-branes, Phys. Rev.D 84 (2011) 126003 [arXiv:1106.1870] [INSPIRE].ADSGoogle Scholar
  24. [24]
    V.G. Kac and M. Wakimoto, Integrable highest weight modules over affine superalgebras and number theory, hep-th/9407057 [INSPIRE].
  25. [25]
    V.G. Kac and M. Wakimoto, Integrable highest weight modules over affine superalgebras and Appell’s function, Commun. Math. Phys.215 (2001) 631.ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    V.G. Kac and M. Wakimoto, Representations of affine superalgebras and mock theta functions, Transform. Groups19 (2014) 383.MathSciNetCrossRefGoogle Scholar
  27. [27]
    A. Folsom, Kac-Wakimoto characters and universal mock theta functions, Trans. Am. Math. Soc.363 (2011) 439.MathSciNetCrossRefGoogle Scholar
  28. [28]
    K. Bringmann and K. Ono, Some characters of Kac and Wakimoto and nonholomorphic modular functions, Math. Ann.345 (2009) 547.MathSciNetCrossRefGoogle Scholar
  29. [29]
    D. Gaiotto, L. Rastelli and S.S. Razamat, Bootstrapping the superconformal index with surface defects, JHEP01 (2013) 022 [arXiv:1207.3577] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    D. Gaiotto and H.-C. Kim, Surface defects and instanton partition functions, JHEP10 (2016) 012 [arXiv:1412.2781] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles and three-dimensional gauge dynamics, Nucl. Phys.B 492 (1997) 152 [hep-th/9611230] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    T. Okazaki, Mirror symmetry of 3D \( \mathcal{N} \) = 4 gauge theories and supersymmetric indices, Phys. Rev.D 100 (2019) 066031 [arXiv:1905.04608] [INSPIRE].
  33. [33]
    T. Okazaki, Abelian dualities of \( \mathcal{N} \) = (0, 4) boundary conditions, JHEP08 (2019) 170 [arXiv:1905.07425] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    D.-E. Diaconescu, D-branes, monopoles and Nahm equations, Nucl. Phys.B 503 (1997) 220 [hep-th/9608163] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    A. Gadde, S. Gukov and P. Putrov, Fivebranes and 4-manifolds, Prog. Math.319 (2016) 155 [arXiv:1306.4320] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  36. [36]
    Y. Yoshida and K. Sugiyama, Localization of 3d \( \mathcal{N} \) = 2 Supersymmetric Theories on S 1× D 2 , arXiv:1409.6713 [INSPIRE].
  37. [37]
    A. Gadde and S. Gukov, 2d Index and Surface operators, JHEP03 (2014) 080 [arXiv:1305.0266] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    F. Benini, R. Eager, K. Hori and Y. Tachikawa, Elliptic genera of two-dimensional N = 2 gauge theories with rank-one gauge groups, Lett. Math. Phys.104 (2014) 465 [arXiv:1305.0533] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    F. Benini, R. Eager, K. Hori and Y. Tachikawa, Elliptic Genera of 2d \( \mathcal{N} \) = 2 Gauge Theories, Commun. Math. Phys.333 (2015) 1241 [arXiv:1308.4896] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    A. Gadde, B. Haghighat, J. Kim, S. Kim, G. Lockhart and C. Vafa, 6d String Chains, JHEP02 (2018) 143 [arXiv:1504.04614] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    P. Putrov, J. Song and W. Yan, (0, 4) dualities, JHEP03 (2016) 185 [arXiv:1505.07110] [INSPIRE].
  42. [42]
    H.-C. Kim, S. Kim and J. Park, 6d strings from new chiral gauge theories, arXiv:1608.03919 [INSPIRE].
  43. [43]
    J. Kim, K. Lee and J. Park, On elliptic genera of 6d string theories, JHEP10 (2018) 100 [arXiv:1801.01631] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    D. Tong and K. Wong, Instantons, Wilson lines and D-branes, Phys. Rev.D 91 (2015) 026007 [arXiv:1410.8523] [INSPIRE].
  45. [45]
    O. Aharony and A. Hanany, Branes, superpotentials and superconformal fixed points, Nucl. Phys.B 504 (1997) 239 [hep-th/9704170] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    A. Kapustin and E. Witten, Electric-Magnetic Duality And The Geometric Langlands Program, Commun. Num. Theor. Phys.1 (2007) 1 [hep-th/0604151] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  47. [47]
    T. Procházka and M. Rapčák, Webs of W-algebras, JHEP11 (2018) 109 [arXiv:1711.06888] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    A.L. Cauchy, Mémoire sur les fonctions dont plusieurs valeurs sont liées entre elles par une équation linéaire, et sur diverses transformations de produits composés d’un nombre indéfini de facteurs, (1893), Cambridge University Press (2009).Google Scholar
  49. [49]
    E. Heine, Untersuchungen über die Reihe, J. Reine Angew. Math.34 (1847) 285.MathSciNetGoogle Scholar
  50. [50]
    G. Gasper and M. Rahman, Basic hypergeometric series, in Encyclopedia of Mathematics and its Applications, vol. 96, second ed., Cambridge University Press, Cambridge (2004).Google Scholar
  51. [51]
    G.H. Hardy, Ramanujan. Twelve lectures on subjects suggested by his life and work, Cambridge University Press, Cambridge, England, Macmillan Company, New York (1940).Google Scholar
  52. [52]
    G.E. Andrews, On Ramanujan’s summation of 1ψ 1 (a; b; z), Proc. Am. Math. Soc.22 (1969) 552.zbMATHGoogle Scholar
  53. [53]
    W. Hahn, Über Orthogonalpolynome, die q-Differenzengleichungen genügen, Math. Nachr.2 (1949) 4.MathSciNetCrossRefGoogle Scholar
  54. [54]
    M. Jackson, On Lerch’s transcendant and the basic bilateral hypergeometric series 2Ψ2, J. Lond. Math. Soc.25 (1950) 189.ADSCrossRefGoogle Scholar
  55. [55]
    M.E.H. Ismail, A simple proof of Ramanujan’s 1ψ 1sum, Proc. Am. Math. Soc.63 (1977) 185.Google Scholar
  56. [56]
    G.E. Andrews and R. Askey, A simple proof of Ramanujan’s summation of the 1ψ 1, Aequationes Math.18 (1978) 333.MathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Perimeter Institute for Theoretical PhysicsWaterlooCanada

Personalised recommendations