Supersymmetric Liouville theory in AdS2 and AdS/CFT

Abstract

In a series of recent papers, a special kind of AdS2/CFT1 duality was observed: the boundary correlators of elementary fields that appear in the Lagrangian of a 2d conformal theory in rigid AdS2 background are the same as the correlators of the corresponding primary operators in the chiral half of that 2d CFT in flat space restricted to the real line. The examples considered were: (i) the Liouville theory where the operator dual to the Liouville scalar in AdS2 is the stress tensor; (ii) the abelian Toda theory where the operators dual to the Toda scalars are the \( \mathcal{W} \) -algebra generators; (iii) the non-abelian Toda theory where the Liouville field is dual to the stress tensor while the extra gauged WZW theory scalars are dual to non-abelian parafermionic operators. By direct Witten diagram com- putations in AdS2 one can check that the structure of the boundary correlators is indeed consistent with the Virasoro (or higher) symmetry. Here we consider a supersymmetric generalization: the \( \mathcal{N} \) = 1 superconformal Liouville theory in AdS2. We start with the super Liouville theory coupled to 2d supergravity and show that a consistent restriction to rigid AdS2 background requires a non-zero value of the supergravity auxiliary field and thus a modification of the Liouville potential from its familiar flat-space form. We show that the Liouville scalar and its fermionic partner are dual to the chiral half of the stress tensor and the supercurrent of the super Liouville theory on the plane. We perform tests supporting the duality by explicitly computing AdS2 Witten diagrams with bosonic and fermionic loops.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    S. Giombi, R. Roiban and A.A. Tseytlin, Half-BPS Wilson loop and AdS2/CFT1 , Nucl. Phys.B 922 (2017) 499 [arXiv:1706.00756] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  2. [2]

    M. Beccaria, S. Giombi and A.A. Tseytlin, Correlators on non-supersymmetric Wilson line in \( \mathcal{N} \) = 4 SYM and AdS2/CFT1 , JHEP05 (2019) 122 [arXiv:1903.04365] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  3. [3]

    H. Ouyang, Holographic four-point functions in Toda field theories in AdS2, JHEP04 (2019) 159 [arXiv:1902.10536] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  4. [4]

    M. Beccaria and A.A. Tseytlin, On boundary correlators in Liouville theory on AdS2, JHEP07 (2019) 008 [arXiv:1904.12753] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  5. [5]

    M. Beccaria and G. Landolfi, Toda theory in AdS2and \( \mathcal{W} \)An -algebra structure of boundary correlators, JHEP10 (2019) 003 [arXiv:1906.06485] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  6. [6]

    M. Beccaria, H. Jiang and A.A. Tseytlin, Non-abelian Toda theory on AdS2and AdS2/ \( CFT\frac{1/2}{2} \)duality, JHEP09 (2019) 036 [arXiv:1907.01357] [INSPIRE].

    Article  ADS  Google Scholar 

  7. [7]

    E. D’Hoker and R. Jackiw, Space translation breaking and compactification in the Liouville theory, Phys. Rev. Lett.50 (1983) 1719 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  8. [8]

    E. D’Hoker, D.Z. Freedman and R. Jackiw, SO (2, 1) Invariant Quantization of the Liouville Theory, Phys. Rev.D 28 (1983) 2583 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  9. [9]

    A.B. Zamolodchikov and A.B. Zamolodchikov, Liouville field theory on a pseudosphere, hep-th/0101152 [INSPIRE].

  10. [10]

    A.M. Polyakov, Quantum Geometry of Bosonic Strings, Phys. Lett.B 103 (1981) 207 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  11. [11]

    Y. Nakayama, Liouville field theory: A Decade after the revolution, Int. J. Mod. Phys.A 19 (2004) 2771 [hep-th/0402009] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  12. [12]

    A.M. Polyakov, Quantum Geometry of Fermionic Strings, Phys. Lett.B 103 (1981) 211 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  13. [13]

    J. Distler, Z. Hlousek and H. Kawai, SuperLiouville Theory as a Two-Dimensional, Superconformal Supergravity Theory, Int. J. Mod. Phys.A 5 (1990) 391 [INSPIRE].

    ADS  Article  Google Scholar 

  14. [14]

    K. Higashijima, T. Uematsu and Y.-z. Yu, Dynamical Supersymmetry Breaking in Two-dimensional N = 1 Supergravity Theories, Phys. Lett.B 139 (1984) 161 [INSPIRE].

    ADS  Article  Google Scholar 

  15. [15]

    W.A. Bardeen and D.Z. Freedman, On the Energy Crisis in anti-de Sitter Supersymmetry, Nucl. Phys.B 253 (1985) 635 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  16. [16]

    E.J. Martinec, Superspace Geometry of Fermionic Strings, Phys. Rev.D 28 (1983) 2604 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  17. [17]

    E. D’Hoker, Classical and Quantal Supersymmetric Liouville Theory, Phys. Rev.D 28 (1983) 1346 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  18. [18]

    T. Fukuda and K. Hosomichi, Super Liouville theory with boundary, Nucl. Phys.B 635 (2002) 215 [hep-th/0202032] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  19. [19]

    S. Deser and B. Zumino, A Complete Action for the Spinning String, Phys. Lett.B 65 (1976) 369 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  20. [20]

    L. Brink, P. Di Vecchia and P.S. Howe, A Locally Supersymmetric and Reparametrization Invariant Action for the Spinning String, Phys. Lett.B 65 (1976) 471 [INSPIRE].

    ADS  Article  Google Scholar 

  21. [21]

    P.S. Howe, Super Weyl Transformations in Two-Dimensions, J. Phys.A 12 (1979) 393 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  22. [22]

    I.L. Buchbinder and S.M. Kuzenko, Ideas and methods of supersymmetry and supergravity: Or a walk through superspace, IOP Publishing, Bristol U.K. (1998), pg. 656.

  23. [23]

    G. Festuccia and N. Seiberg, Rigid Supersymmetric Theories in Curved Superspace, JHEP06 (2011) 114 [arXiv:1105.0689] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  24. [24]

    S.M. Kuzenko, Supersymmetric Spacetimes from Curved Superspace, PoS(CORFU2014)140 (2015) [arXiv:1504.08114] [INSPIRE].

  25. [25]

    T. Uematsu, Structure of N = 1 Conformal and Poincaŕe Supergravity in (1 + 1)-dimensions and (2 + 1)-dimensions, Z. Phys.C 29 (1985) 143 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  26. [26]

    T. Uematsu, Constraints and Actions in Two-dimensional and Three-dimensional N = 1 Conformal Supergravity, Z. Phys.C 32 (1986) 33 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  27. [27]

    N. Sakai and Y. Tanii, Effective Potential in Two-dimensional Anti-de Sitter Space, Nucl. Phys.B 255 (1985) 401 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  28. [28]

    T. Inami and H. Ooguri, Dynamical breakdown of supersymmetry in two-dimensional anti-de Sitter space, Nucl. Phys.B 273 (1986) 487 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  29. [29]

    E. D’Hoker and D.H. Phong, The Geometry of String Perturbation Theory, Rev. Mod. Phys.60 (1988) 917 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  30. [30]

    E. Abdalla, M.C.B. Abdalla, D. Dalmazi and K. Harada, Correlation functions in superLiouville theory, Phys. Rev. Lett.68 (1992) 1641 [hep-th/9108025] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  31. [31]

    C.G. Callan Jr., E.J. Martinec, M.J. Perry and D. Friedan, Strings in Background Fields, Nucl. Phys.B 262 (1985) 593 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  32. [32]

    A.A. Tseytlin, σ-model approach to string theory, Int. J. Mod. Phys.A 4 (1989) 1257 [INSPIRE].

  33. [33]

    A.A. Tseytlin, On the Structure of the Renormalization Group β-functions in a Class of Two-dimensional Models, Phys. Lett.B 241 (1990) 233 [INSPIRE].

    ADS  Article  Google Scholar 

  34. [34]

    E. D’Hoker and D.H. Phong, Vertex Operators for Closed Strings, Phys. Rev.D 35 (1987) 3890 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  35. [35]

    L. Frappat, P. Sorba and A. Sciarrino, Dictionary on Lie superalgebras, hep-th/9607161 [INSPIRE].

  36. [36]

    I.E. Cunha, N.L. Holanda and F. Toppan, From worldline to quantum superconformal mechanics with and without oscillatorial terms: D(2, 1; α) and sl(2|1) models, Phys. Rev.D 96 (2017) 065014 [arXiv:1610.07205] [INSPIRE].

  37. [37]

    A.B. Zamolodchikov, Infinite Additional Symmetries in Two-Dimensional Conformal Quantum Field Theory, Theor. Math. Phys.65 (1985) 1205 [INSPIRE].

    Article  Google Scholar 

  38. [38]

    T. Kawano and K. Okuyama, Spinor exchange in AdS(d + 1), Nucl. Phys.B 565 (2000) 427 [hep-th/9905130] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  39. [39]

    D.W. Dusedau and D.Z. Freedman, Renormalization in Anti-de Sitter Supersymmetry, Phys. Rev.D 33 (1986) 395 [INSPIRE].

    ADS  Google Scholar 

  40. [40]

    Y.Y. Goldschmidt, On the renormalization of the supersymmetric Liouville action and the three-dimensional Ising model critical exponent, Phys. Lett.B 112 (1982) 359 [INSPIRE].

    ADS  Article  Google Scholar 

  41. [41]

    P. Menotti and E. Tonni, The Tetrahedron graph in Liouville theory on the pseudosphere, Phys. Lett.B 586 (2004) 425 [hep-th/0311234] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  42. [42]

    A. Denner, H. Eck, O. Hahn and J. Kublbeck, Compact Feynman rules for Majorana fermions, Phys. Lett.B 291 (1992) 278 [INSPIRE].

    ADS  Article  Google Scholar 

  43. [43]

    A. Denner, H. Eck, O. Hahn and J. Kublbeck, Feynman rules for fermion number violating interactions, Nucl. Phys.B 387 (1992) 467 [INSPIRE].

    ADS  Article  Google Scholar 

  44. [44]

    T. Hahn, CUBA: A Library for multidimensional numerical integration, Comput. Phys. Commun.168 (2005) 78 [hep-ph/0404043] [INSPIRE].

  45. [45]

    F. Benini and S. Cremonesi, Partition Functions of \( \mathcal{N} \) = (2, 2) Gauge Theories on S2and Vortices, Commun. Math. Phys.334 (2015) 1483 [arXiv:1206.2356] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  46. [46]

    E. D’Hoker, D.Z. Freedman and L. Rastelli, AdS/CFT four point functions: How to succeed at z integrals without really trying, Nucl. Phys.B 562 (1999) 395 [hep-th/9905049] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  47. [47]

    R. Camporesi, The Spinor heat kernel in maximally symmetric spaces, Commun. Math. Phys.148 (1992) 283 [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  48. [48]

    W. Mueck, Spinor parallel propagator and Green’s function in maximally symmetric spaces, J. Phys.A 33 (2000) 3021 [hep-th/9912059] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  49. [49]

    A. Basu and L.I. Uruchurtu, Gravitino propagator in anti de Sitter space, Class. Quant. Grav.23 (2006) 6059 [hep-th/0603089] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  50. [50]

    E. D’Hoker, D.Z. Freedman, S.D. Mathur, A. Matusis and L. Rastelli, Graviton exchange and scomplete four point functions in the AdS/CFT correspondence, Nucl. Phys.B 562 (1999) 353 [hep-th/9903196] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  51. [51]

    F.A. Dolan and H. Osborn, Conformal partial waves and the operator product expansion, Nucl. Phys.B 678 (2004) 491 [hep-th/0309180] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Affiliations

Authors

Corresponding author

Correspondence to Matteo Beccaria.

Additional information

ArXiv ePrint:1909.10255

Arkady A. Tseytlin Also at the Institute for Theoretical and Mathematical Physics, Moscow State University and Lebedev Institute.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Beccaria, M., Jiang, H. & Tseytlin, A.A. Supersymmetric Liouville theory in AdS2 and AdS/CFT. J. High Energ. Phys. 2019, 51 (2019). https://doi.org/10.1007/JHEP11(2019)051

Download citation

Keywords

  • AdS-CFT Correspondence
  • Supersymmetry and Duality