Advertisement

Journal of High Energy Physics

, 2019:48 | Cite as

Thermodynamic evolution of secluded vector dark matter: conventional WIMPs and nonconventional WIMPs

  • Kwei-Chou YangEmail author
Open Access
Regular Article - Theoretical Physics
  • 114 Downloads

Abstract

The secluded dark matter resides within a hidden sector and self-annihilates into lighter mediators which subsequently decay to the Standard Model (SM) particles. Depending on the coupling strength of the mediator to the SM, the hidden sector can be kinetically decoupled from the SM bath when the temperature drops below the mediator’s mass, and the dark matter annihilation cross section at freeze-out is thus possible to be boosted above the conventional value of weak interacting massive particles. We present a comprehensive study on thermodynamic evolution of the hidden sector from the first principle, using the simplest secluded vector dark matter model. Motivated by the observation of Galactic center gamma-ray excess, we take two mass sets \( \mathcal{O} \)(80 GeV) for the dark matter and mediator as examples to illustrate the thermodynamics. The coupled Boltzmann moment equations for number densities and temperature evolutions of the hidden sector are numerically solved. The formalism can be easily extended to a general secluded dark matter model. We show that a long-lived mediator can result in a boosted dark matter annihilation cross section to account for the relic abundance. We further show the parameter space which provides a good fit to the Galactic center excess data and is compatible with the current bounds and LUX-ZEPLIN projected sensitivity. We find that the future observations of dwarf spheroidal galaxies offer promising reach to probe the most relic allowed parameter space relevant to the boosted dark matter annihilation cross section.

Keywords

Cosmology of Theories beyond the SM Beyond Standard Model 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    L. Goodenough and D. Hooper, Possible evidence for dark matter annihilation in the inner milky way from the Fermi gamma ray space telescope, arXiv:0910.2998 [INSPIRE].
  2. [2]
    D. Hooper and L. Goodenough, Dark matter annihilation in the galactic center as seen by the Fermi gamma ray space telescope, Phys. Lett.B 697 (2011) 412 [arXiv:1010.2752] [INSPIRE].
  3. [3]
    D. Hooper and T. Linden, On the origin of the gamma rays from the galactic center, Phys. Rev.D 84 (2011) 123005 [arXiv:1110.0006] [INSPIRE].
  4. [4]
    K.N. Abazajian and M. Kaplinghat, Detection of a gamma-ray source in the galactic center consistent with extended emission from dark matter annihilation and concentrated astrophysical emission, Phys. Rev.D 86 (2012) 083511 [Erratum ibid.D 87 (2013) 129902] [arXiv:1207.6047] [INSPIRE].
  5. [5]
    C. Gordon and O. Macias, Dark matter and pulsar model constraints from galactic center Fermi-LAT gamma ray observations, Phys. Rev.D 88 (2013) 083521 [Erratum ibid.D 89 (2014) 049901] [arXiv:1306.5725] [INSPIRE].
  6. [6]
    W.-C. Huang, A. Urbano and W. Xue, Fermi bubbles under dark matter scrutiny. Part I: astrophysical analysis, arXiv:1307.6862 [INSPIRE].
  7. [7]
    T. Daylan et al., The characterization of the gamma-ray signal from the central milky way: a case for annihilating dark matter, Phys. Dark Univ.12 (2016) 1 [arXiv:1402.6703] [INSPIRE].
  8. [8]
    F. Calore, I. Cholis and C. Weniger, Background model systematics for the Fermi GeV excess, JCAP03 (2015) 038 [arXiv:1409.0042] [INSPIRE].CrossRefGoogle Scholar
  9. [9]
    F. Calore, I. Cholis, C. McCabe and C. Weniger, A tale of tails: dark matter interpretations of the Fermi GeV excess in light of background model systematics, Phys. Rev.D 91 (2015) 063003 [arXiv:1411.4647] [INSPIRE].
  10. [10]
    C. Karwin, S. Murgia, T.M.P. Tait, T.A. Porter and P. Tanedo, Dark matter interpretation of the Fermi-LAT observation toward the galactic center, Phys. Rev.D 95 (2017) 103005 [arXiv:1612.05687] [INSPIRE].
  11. [11]
    Fermi-LAT collaboration, The Fermi galactic center GeV excess and implications for dark matter, Astrophys. J.840 (2017) 43 [arXiv:1704.03910] [INSPIRE].
  12. [12]
    XENON collaboration, First dark matter search results from the XENON1T experiment, Phys. Rev. Lett.119 (2017) 181301 [arXiv:1705.06655] [INSPIRE].
  13. [13]
    PandaX-II collaboration, Dark matter results from 54-ton-day exposure of PandaX-II experiment, Phys. Rev. Lett.119 (2017) 181302 [arXiv:1708.06917] [INSPIRE].
  14. [14]
    LUX collaboration, Results from a search for dark matter in the complete LUX exposure, Phys. Rev. Lett.118 (2017) 021303 [arXiv:1608.07648] [INSPIRE].
  15. [15]
    LUX-ZEPLIN collaboration, Projected WIMP sensitivity of the LUX-ZEPLIN (LZ) dark matter experiment, arXiv:1802.06039 [INSPIRE].
  16. [16]
    M. Pospelov, A. Ritz and M.B. Voloshin, Secluded WIMP dark matter, Phys. Lett.B 662 (2008) 53 [arXiv:0711.4866] [INSPIRE].
  17. [17]
    P. Ko, W.-I. Park and Y. Tang, Higgs portal vector dark matter for GeV scale γ-ray excess from galactic center, JCAP09 (2014) 013 [arXiv:1404.5257] [INSPIRE].
  18. [18]
    A. Berlin, P. Gratia, D. Hooper and S.D. McDermott, Hidden sector dark matter models for the galactic center γ-ray excess, Phys. Rev.D 90 (2014) 015032 [arXiv:1405.5204] [INSPIRE].
  19. [19]
    M. Escudero, S.J. Witte and D. Hooper, Hidden sector dark matter and the galactic center gamma-ray excess: a closer look, JCAP11 (2017) 042 [arXiv:1709.07002] [INSPIRE].
  20. [20]
    P. Ko and Y. Tang, Galactic center γ-ray excess in hidden sector DM models with dark gauge symmetries: local Z 3symmetry as an example, JCAP01 (2015) 023 [arXiv:1407.5492] [INSPIRE].
  21. [21]
    M. Abdullah, A. DiFranzo, A. Rajaraman, T.M.P. Tait, P. Tanedo and A.M. Wijangco, Hidden on-shell mediators for the galactic center γ-ray excess, Phys. Rev.D 90 (2014) 035004 [arXiv:1404.6528] [INSPIRE].
  22. [22]
    A. Martin, J. Shelton and J. Unwin, Fitting the galactic center γ-ray excess with cascade annihilations, Phys. Rev.D 90 (2014) 103513 [arXiv:1405.0272] [INSPIRE].
  23. [23]
    Y.G. Kim, K.Y. Lee, C.B. Park and S. Shin, Secluded singlet fermionic dark matter driven by the Fermi γ-ray excess, Phys. Rev.D 93 (2016) 075023 [arXiv:1601.05089] [INSPIRE].
  24. [24]
    K.-C. Yang, Search for scalar dark matter via pseudoscalar portal interactions: in light of the galactic center γ-ray excess, Phys. Rev.D 97 (2018) 023025 [arXiv:1711.03878] [INSPIRE].
  25. [25]
    S. Profumo, F.S. Queiroz, J. Silk and C. Siqueira, Searching for secluded dark matter with H.E.S.S., Fermi-LAT and Planck, JCAP03 (2018) 010 [arXiv:1711.03133] [INSPIRE].CrossRefGoogle Scholar
  26. [26]
    Planck collaboration, Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys.594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
  27. [27]
    J.A. Dror, E. Kuflik and W.H. Ng, Codecaying dark matter, Phys. Rev. Lett.117 (2016) 211801 [arXiv:1607.03110] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    D. Pappadopulo, J.T. Ruderman and G. Trevisan, Dark matter freeze-out in a nonrelativistic sector, Phys. Rev.D 94 (2016) 035005 [arXiv:1602.04219] [INSPIRE].
  29. [29]
    M. Farina, D. Pappadopulo, J.T. Ruderman and G. Trevisan, Phases of cannibal dark matter, JHEP12 (2016) 039 [arXiv:1607.03108] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    A. Berlin, D. Hooper and G. Krnjaic, Thermal dark matter from a highly decoupled sector, Phys. Rev.D 94 (2016) 095019 [arXiv:1609.02555] [INSPIRE].
  31. [31]
    K.-C. Yang, Hidden Higgs portal vector dark matter for the galactic center gamma-ray excess from the two-step cascade annihilation and muon g − 2, JHEP08 (2018) 099 [arXiv:1806.05663] [INSPIRE].
  32. [32]
    Y. Hochberg, E. Kuflik, T. Volansky and J.G. Wacker, Mechanism for thermal relic dark matter of strongly interacting massive particles, Phys. Rev. Lett.113 (2014) 171301 [arXiv:1402.5143] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    E. Kuflik, M. Perelstein, N. R.-L. Lorier and Y.-D. Tsai, Elastically decoupling dark matter, Phys. Rev. Lett.116 (2016) 221302 [arXiv:1512.04545] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    E. Kuflik, M. Perelstein, N. R.-L. Lorier and Y.-D. Tsai, Phenomenology of ELDER dark matter, JHEP08 (2017) 078 [arXiv:1706.05381] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    Particle Data Group collaboration, Review of particle physics, Phys. Rev.D 98 (2018) 030001 [INSPIRE].
  36. [36]
    J.M. Cline, K. Kainulainen, P. Scott and C. Weniger, Update on scalar singlet dark matter, Phys. Rev.D 88 (2013) 055025 [Erratum ibid.D 92 (2015) 039906] [arXiv:1306.4710] [INSPIRE].
  37. [37]
    Planck collaboration, Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys.571 (2014) A16 [arXiv:1303.5076] [INSPIRE].
  38. [38]
    T. Bringmann and S. Hofmann, Thermal decoupling of WIMPs from first principles, JCAP04 (2007) 016 [Erratum ibid.03 (2016) E02] [hep-ph/0612238] [INSPIRE].
  39. [39]
    T. Bringmann, Particle models and the small-scale structure of dark matter, New J. Phys.11 (2009) 105027 [arXiv:0903.0189] [INSPIRE].
  40. [40]
    P. Gondolo, J. Hisano and K. Kadota, The effect of quark interactions on dark matter kinetic decoupling and the mass of the smallest dark halos, Phys. Rev.D 86 (2012) 083523 [arXiv:1205.1914] [INSPIRE].
  41. [41]
    L. Visinelli and P. Gondolo, Kinetic decoupling of WIMPs: analytic expressions, Phys. Rev.D 91 (2015) 083526 [arXiv:1501.02233] [INSPIRE].
  42. [42]
    T. Binder, L. Covi, A. Kamada, H. Murayama, T. Takahashi and N. Yoshida, Matter power spectrum in hidden neutrino interacting dark matter models: a closer look at the collision term, JCAP11 (2016) 043 [arXiv:1602.07624] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    T. Binder, T. Bringmann, M. Gustafsson and A. Hryczuk, Early kinetic decoupling of dark matter: when the standard way of calculating the thermal relic density fails, Phys. Rev.D 96 (2017) 115010 [arXiv:1706.07433] [INSPIRE].
  44. [44]
    J.F. Navarro, C.S. Frenk and S.D.M. White, The structure of cold dark matter halos, Astrophys. J.462 (1996) 563 [astro-ph/9508025] [INSPIRE].
  45. [45]
    J.F. Navarro, C.S. Frenk and S.D.M. White, A universal density profile from hierarchical clustering, Astrophys. J.490 (1997) 493 [astro-ph/9611107] [INSPIRE].
  46. [46]
    G. Elor, N.L. Rodd and T.R. Slatyer, Multistep cascade annihilations of dark matter and the galactic center excess, Phys. Rev.D 91 (2015) 103531 [arXiv:1503.01773] [INSPIRE].
  47. [47]
    M. Cirelli et al., PPPC 4 DM ID: a Poor Particle Physicist Cookbook for Dark Matter Indirect Detection, JCAP03 (2011) 051 [Erratum ibid.10 (2012) E01] [arXiv:1012.4515] [INSPIRE].
  48. [48]
    P. Ciafaloni, D. Comelli, A. Riotto, F. Sala, A. Strumia and A. Urbano, Weak corrections are relevant for dark matter indirect detection, JCAP03 (2011) 019 [arXiv:1009.0224] [INSPIRE].
  49. [49]
    T. Linden, N.L. Rodd, B.R. Safdi and T.R. Slatyer, High-energy tail of the galactic center gamma-ray excess, Phys. Rev.D 94 (2016) 103013 [arXiv:1604.01026] [INSPIRE].
  50. [50]
    Fermi-LAT and DES collaborations, Searching for dark matter annihilation in recently discovered milky way satellites with Fermi-LAT, Astrophys. J.834 (2017) 110 [arXiv:1611.03184] [INSPIRE].
  51. [51]
    Figures and data files associated with the Fermi LAT paper “Searching for dark matter annihilation in recently discovered milky way satellites with Fermi-LAT” webpage, http://www-glast.stanford.edu/pub data/1203/.
  52. [52]
    T.R. Slatyer, Indirect dark matter signatures in the cosmic dark ages. I. Generalizing the bound on s-wave dark matter annihilation from Planck results, Phys. Rev.D 93 (2016) 023527 [arXiv:1506.03811] [INSPIRE].
  53. [53]
    M. Kawasaki, K. Kohri and N. Sugiyama, Cosmological constraints on late time entropy production, Phys. Rev. Lett.82 (1999) 4168 [astro-ph/9811437] [INSPIRE].
  54. [54]
    M. Kawasaki, K. Kohri and N. Sugiyama, MeV scale reheating temperature and thermalization of neutrino background, Phys. Rev.D 62 (2000) 023506 [astro-ph/0002127] [INSPIRE].
  55. [55]
    P.F. de Salas, M. Lattanzi, G. Mangano, G. Miele, S. Pastor and O. Pisanti, Bounds on very low reheating scenarios after Planck, Phys. Rev.D 92 (2015) 123534 [arXiv:1511.00672] [INSPIRE].
  56. [56]
    T. Hasegawa, N. Hiroshima, K. Kohri, R.S.L. Hansen, T. Tram and S. Hannestad, MeV-scale reheating temperature and thermalization of oscillating neutrinos by radiative and hadronic decays of massive particles, arXiv:1908.10189 [INSPIRE].
  57. [57]
    A. Djouadi, The anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept.459 (2008) 1 [hep-ph/0503173] [INSPIRE].
  58. [58]
    W.-Y. Keung and W.J. Marciano, Higgs scalar decays: H → W ±X, Phys. Rev.D 30 (1984) 248 [INSPIRE].
  59. [59]
    A. Djouadi, The anatomy of electro-weak symmetry breaking. I: the Higgs boson in the Standard Model, Phys. Rept.457 (2008) 1 [hep-ph/0503172] [INSPIRE].
  60. [60]
    P. Gondolo and G. Gelmini, Cosmic abundances of stable particles: improved analysis, Nucl. Phys.B 360 (1991) 145 [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of Physics and Center for High Energy PhysicsChung Yuan Christian UniversityTaoyuanTaiwan

Personalised recommendations