Advertisement

Journal of High Energy Physics

, 2019:44 | Cite as

Correlation functions at the bulk point singularity from the gravitational eikonal S-matrix

  • Carlos CardonaEmail author
Open Access
Regular Article - Theoretical Physics
  • 23 Downloads

Abstract

The bulk point singularity limit of conformal correlation functions in Lorentzian signature acts as a microscope to look into local bulk physics in AdS. From it we can extract flat space scattering processes localized in AdS that ultimate should be related to corresponding observables on the conformal field theory at the boundary. In this paper we use this interesting property to propose a map from flat space s-matrix to conformal correlation functions and try it on perturbative gravitational scattering. In particular, we show that the eikonal limit of gravitation scattering maps to a correlation function of the expected form at the bulk point singularity. We also compute the inverse map recovering a previous proposal in the literature.

Keywords

1/N Expansion AdS-CFT Correspondence Conformal Field Theory Scattering Amplitudes 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  2. [2]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys.2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    J. Polchinski, S matrices from AdS space-time, hep-th/9901076 [INSPIRE].
  4. [4]
    L. Susskind, Holography in the flat space limit, AIP Conf. Proc.493 (1999) 98 [hep-th/9901079] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  5. [5]
    M.F. Paulos et al., The S-matrix bootstrap. Part I: QFT in AdS, JHEP11 (2017) 133 [arXiv:1607.06109] [INSPIRE].zbMATHGoogle Scholar
  6. [6]
    M.F. Paulos et al., The S-matrix bootstrap. Part II: two dimensional amplitudes, JHEP11 (2017) 143 [arXiv:1607.06110] [INSPIRE].
  7. [7]
    A.L. Fitzpatrick and J. Kaplan, Scattering states in AdS/CFT, arXiv:1104.2597 [INSPIRE].
  8. [8]
    J. Penedones, Writing CFT correlation functions as AdS scattering amplitudes, JHEP03 (2011) 025 [arXiv:1011.1485] [INSPIRE].
  9. [9]
    A.L. Fitzpatrick et al., A natural language for AdS/CFT correlators, JHEP11 (2011) 095 [arXiv:1107.1499] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    A.L. Fitzpatrick and J. Kaplan, Analyticity and the Holographic S-matrix, JHEP10 (2012) 127 [arXiv:1111.6972] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    A.L. Fitzpatrick and J. Kaplan, Unitarity and the holographic S-matrix, JHEP10 (2012) 032 [arXiv:1112.4845] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    D. Nandan, A. Schreiber, A. Volovich and M. Zlotnikov, Celestial amplitudes: conformal partial waves and soft limits, JHEP10 (2019) 018 [arXiv:1904.10940] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    E. Hijano, Semi-classical BMS 3blocks and flat holography, JHEP10 (2018) 044 [arXiv:1805.00949] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    E. Hijano, Flat space physics from AdS/CFT, JHEP07 (2019) 132 [arXiv:1905.02729] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    H. Bondi, M.G.J. van der Burg and A.W.K. Metzner, Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems, Proc. Roy. Soc. Lond.A 269 (1962) 21.Google Scholar
  16. [16]
    R. Sachs, Asymptotic symmetries in gravitational theory, Phys. Rev.128 (1962) 2851 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    S. Pasterski, S.-H. Shao and A. Strominger, Flat space amplitudes and conformal symmetry of the celestial sphere, Phys. Rev.D 96 (2017) 065026 [arXiv:1701.00049] [INSPIRE].
  18. [18]
    C. Cheung, A. de la Fuente and R. Sundrum, 4D scattering amplitudes and asymptotic symmetries from 2D CFT, JHEP01 (2017) 112 [arXiv:1609.00732] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    A. Ball et al., Uplifting AdS 3/CFT 2to flat space holography, JHEP08 (2019) 168 [arXiv:1905.09809] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    C. Cardona and Y.-t. Huang, S-matrix singularities and CFT correlation functions, JHEP08 (2017) 133 [arXiv:1702.03283] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    S. Pasterski and S.-H. Shao, Conformal basis for flat space amplitudes, Phys. Rev.D 96 (2017) 065022 [arXiv:1705.01027] [INSPIRE].
  22. [22]
    S. Pasterski, S.-H. Shao and A. Strominger, Gluon amplitudes as 2d conformal correlators, Phys. Rev.D 96 (2017) 085006 [arXiv:1706.03917] [INSPIRE].
  23. [23]
    H.T. Lam and S.-H. Shao, Conformal basis, optical theorem and the bulk point singularity, Phys. Rev.D 98 (2018) 025020 [arXiv:1711.06138] [INSPIRE].
  24. [24]
    S. Banerjee and P. Pandey, Conformal properties of soft operators — 2: use of null-states, arXiv:1906.01650 [INSPIRE].
  25. [25]
    T. Adamo, L. Mason and A. Sharma, Celestial amplitudes and conformal soft theorems, Class. Quant. Grav.36 (2019) 205018 [arXiv:1905.09224] [INSPIRE].CrossRefGoogle Scholar
  26. [26]
    S. Stieberger and T.R. Taylor, Symmetries of celestial amplitudes, Phys. Lett.B 793 (2019) 141 [arXiv:1812.01080] [INSPIRE].
  27. [27]
    A. Schreiber, A. Volovich and M. Zlotnikov, Tree-level gluon amplitudes on the celestial sphere, Phys. Lett.B 781 (2018) 349 [arXiv:1711.08435] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    M. Gary, S.B. Giddings and J. Penedones, Local bulk S-matrix elements and CFT singularities, Phys. Rev.D 80 (2009) 085005 [arXiv:0903.4437] [INSPIRE].
  29. [29]
    M. Gary and S.B. Giddings, The flat space S-matrix from the AdS/CFT correspondence?, Phys. Rev.D 80 (2009) 046008 [arXiv:0904.3544] [INSPIRE].
  30. [30]
    I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from conformal field theory, JHEP10 (2009) 079 [arXiv:0907.0151] [INSPIRE].
  31. [31]
    T. Okuda and J. Penedones, String scattering in flat space and a scaling limit of Yang-Mills correlators, Phys. Rev.D 83 (2011) 086001 [arXiv:1002.2641] [INSPIRE].
  32. [32]
    J. Maldacena, D. Simmons-Duffin and A. Zhiboedov, Looking for a bulk point, JHEP01 (2017) 013 [arXiv:1509.03612] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    L. Cornalba, M.S. Costa, J. Penedones and R. Schiappa, Eikonal Approximation in AdS/CFT: From Shock Waves to Four-Point Functions, JHEP08 (2007) 019 [hep-th/0611122] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    L. Cornalba, M.S. Costa, J. Penedones and R. Schiappa, Eikonal approximation in AdS/CFT: conformal partial waves and finite N four-point functions, Nucl. Phys.B 767 (2007) 327 [hep-th/0611123] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    L. Cornalba, M.S. Costa and J. Penedones, Eikonal approximation in AdS/CFT: resumming the gravitational loop expansion, JHEP09 (2007) 037 [arXiv:0707.0120] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  36. [36]
    L. Cornalba, M.S. Costa and J. Penedones, Eikonal methods in AdS/CFT: BFKL Pomeron at weak coupling, JHEP06 (2008) 048 [arXiv:0801.3002] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    L. Cornalba, Eikonal methods in AdS/CFT: Regge theory and multi-reggeon exchange, arXiv:0710.5480 [INSPIRE].
  38. [38]
    M. Kulaxizi, A. Parnachev and A. Zhiboedov, Bulk phase shift, CFT Regge limit and Einstein gravity, JHEP06 (2018) 121 [arXiv:1705.02934] [INSPIRE].
  39. [39]
    Z. Komargodski and A. Zhiboedov, Convexity and liberation at large spin, JHEP11 (2013) 140 [arXiv:1212.4103] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    A.L. Fitzpatrick, J. Kaplan, D. Poland and D. Simmons-Duffin, The analytic bootstrap and AdS superhorizon locality, JHEP12 (2013) 004 [arXiv:1212.3616] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    A.L. Fitzpatrick, E. Katz, D. Poland and D. Simmons-Duffin, Effective conformal theory and the flat-space limit of AdS, JHEP07 (2011) 023 [arXiv:1007.2412] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    E. D’Hoker et al., Graviton exchange and complete four point functions in the AdS/CFT correspondence, Nucl. Phys.B 562 (1999) 353 [hep-th/9903196] [INSPIRE].
  43. [43]
    E. D’Hoker, D.Z. Freedman and L. Rastelli, AdS/CFT four point functions: how to succeed at z integrals without really trying, Nucl. Phys.B 562 (1999) 395 [hep-th/9905049] [INSPIRE].
  44. [44]
    A. Koemans Collado, P. Di Vecchia and R. Russo, Revisiting the second post-Minkowskian eikonal and the dynamics of binary black holes, Phys. Rev.D 100 (2019) 066028 [arXiv:1904.02667] [INSPIRE].
  45. [45]
    M. Levy and J. Sucher, Eikonal approximation in quantum field theory, Phys. Rev.186 (1969) 1656 [INSPIRE].
  46. [46]
    D. Amati, M. Ciafaloni and G. Veneziano, Can space-time be probed below the string size?, Phys. Lett.B 216 (1989) 41 [INSPIRE].
  47. [47]
    D. Amati, M. Ciafaloni and G. Veneziano, Superstring collisions at Planckian energies, Phys. Lett.B 197 (1987) 81 [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    I.J. Muzinich and M. Soldate, High-energy unitarity of gravitation and strings, Phys. Rev.D 37 (1988) 359 [INSPIRE].
  49. [49]
    S.B. Giddings and M. Srednicki, High-energy gravitational scattering and black hole resonances, Phys. Rev.D 77 (2008) 085025 [arXiv:0711.5012] [INSPIRE].
  50. [50]
    K. Lang and W. Rühl, The critical O(N) σ-model at dimension 2 < d < 4 and order 1/n 2: operator product expansions and renormalization, Nucl. Phys.B 377 (1992) 371 [INSPIRE].
  51. [51]
    L.F. Alday and A. Zhiboedov, An algebraic approach to the analytic bootstrap, JHEP04 (2017) 157 [arXiv:1510.08091] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  52. [52]
    C. Cardona, Mellin-(Schwinger) representation of One-loop Witten diagrams in AdS, arXiv:1708.06339 [INSPIRE].
  53. [53]
    L.F. Alday, A. Bissi and E. Perlmutter, Genus-one string amplitudes from conformal field theory, JHEP06 (2019) 010 [arXiv:1809.10670] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  54. [54]
    L.F. Alday and A. Bissi, Loop corrections to supergravity on AdS 5× S 5 , Phys. Rev. Lett.119 (2017) 171601 [arXiv:1706.02388] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    O. Aharony, L.F. Alday, A. Bissi and E. Perlmutter, Loops in AdS from conformal field theory, JHEP07 (2017) 036 [arXiv:1612.03891] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  56. [56]
    I. Bertan and I. Sachs, Loops in Anti-de Sitter space, Phys. Rev. Lett.121 (2018) 101601 [arXiv:1804.01880] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    E.Y. Yuan, Simplicity in AdS perturbative dynamics, arXiv:1801.07283 [INSPIRE].
  58. [58]
    F. Aprile, J.M. Drummond, P. Heslop and H. Paul, Loop corrections for Kaluza-Klein AdS amplitudes, JHEP05 (2018) 056 [arXiv:1711.03903] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  59. [59]
    S. Giombi, C. Sleight and M. Taronna, Spinning AdS loop diagrams: two point functions, JHEP06 (2018) 030 [arXiv:1708.08404] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Niels Bohr International Academy and Discovery CenterUniversity of Copenhagen, Niels Bohr InstituteCopenhagen ØDenmark

Personalised recommendations