Advertisement

Journal of High Energy Physics

, 2019:43 | Cite as

Hairy black hole chemistry

  • Dumitru AstefaneseiEmail author
  • Robert B. Mann
  • Raúl Rojas
Open Access
Regular Article - Theoretical Physics
  • 40 Downloads

Abstract

We study the thermodynamics of an exact hairy black hole solution in Anti- deSitter (AdS) spacetime. We use the counterterm method supplemented with boundary terms for the scalar field to obtain the thermodynamic quantities and stress tensor of the dual field theory. We then extend our analysis by considering a dynamical cosmological constant and verify the isoperimetric inequality. Unlike the thermodynamics of Reissner- Nordström (RN) black hole in this ‘extended’ framework, the presence of the scalar field and its self-interaction makes also the criticality possible in the grand canonical ensemble. In the canonical ensemble, we prove that, in fact, there exist two critical points. Finally we comment on a different possible interpretation that is more natural in the context of string theory.

Keywords

Black Holes Classical Theories of Gravity 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large N field theories, string theory and gravity, Phys. Rept.323 (2000) 183 [hep-th/9905111] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    H. Nastase, String Theory M ethod s for Condensed Matter Physics, Cambridge University Press, Cambridge U.K. (2017).zbMATHCrossRefGoogle Scholar
  4. [4]
    M. Ammon and J. Erdmenger , Gauge/ Gravity Duality: Fou ndatio ns and Applications, Cambridge University Press, Cambridge U.K. (2015).zbMATHCrossRefGoogle Scholar
  5. [5]
    D. Astefanesei and E. Radu, Boson stars with negative cosmological constant, Nucl. Phys.B 665 (2003) 594 [gr-qc/0309131] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    D. Astefanesei and E. Radu, Rotating boson stars in (2 + 1)-dimenmsions, Phys. Lett.B 587 (2004) 7 [gr-qc/0310135] [INSPIRE].
  7. [7]
    A. Buchel, S.L. Liebling and L. Lehner, Boson stars in AdS spacetime, Phys. Rev.D 87 (2013) 123006 [arXiv:1304. 4166] [INSPIRE].
  8. [8]
    O.J.C. Dias, G.T. Horowitz and J.E. Santos, Black holes with only one Killing field, JHEP07 (2011) 115 [arXiv:1105.4167] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    S. Stotyn, M. Park, P. McGrath and R.B. Mann, Black Holes and Boson Stars with One Killing Field in Arbitrary Odd Dimensions, Phys. Rev.D 85 (2012) 044036 [arXiv:1110.2223] [INSPIRE].
  10. [10]
    S. Stotyn and R.B. Mann, Another Mass Gap in the BTZ Geometry?, J. Phys.A 45 (2012) 374025 [arXiv:1203.0214] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  11. [11]
    P.A. González, E. Papantonopoulos, J. Saavedra and Y. Vásquez, Four-Dimensional Asymptotically AdS Black Holes with Scalar Hair, JHEP12 (2013) 021 [arXiv:1309.2161] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    L.J. Henderson, R.B. Mann and S. Stotyn, Gauss-Bonnet Boson Stars with a Single Killing Vector, Phys. Rev.D 91 (2015) 024009 [arXiv:1403.1865] [INSPIRE].
  13. [13]
    Y. Brihaye, C. Herdeiro and E. Radu, Myers-Perry black holes with scalar hair and a mass gap, Phys. Lett.B 739 (2014) 1 [arXiv:1408.5581] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  14. [14]
    C. Herdeiro, J. Kunz, E. Radu and B. Subagyo, Myers-Perry black holes with scalar hair and a mass gap: Unequal spins, Phys. Lett.B 748 (2015) 30 [arXiv:1505.02407] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  15. [15]
    D. Kubiznak and R.B. Mann, Black hole chemistry, Can. J. Phys.93 (2015) 999 [arXiv:1404.2126] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    M. Henneaux and C. Teitelboim, Asymptotically anti-de Sitter Spaces, Commun. Math. Phys.98 (1985) 391 [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    J.D.E. Creighton and R.B. Mann, Quasilocal thermodynamics of dilaton gravity coupled to gauge fields, Phys. Rev.D 52 (1995) 4569 [gr-qc/9505007] [INSPIRE].
  18. [18]
    D. Kastor, S. Ray and J. Traschen, Smarr Formula and an Extended First Law for Lovelock Gravity, Class. Quant. Grav.27 (2010) 235014 [arXiv:1005.5053] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  19. [19]
    D. Kastor, S. Ray and J. Traschen, Mass and Free Energy of Lovelock Black Holes, Class. Quant. Grav.28 (2011) 195022 [arXiv:1106.2764] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  20. [20]
    M. Cvetič, G.W. Gibbons, D. Kubiznak and C.N. Pope, Black Hole Enthalpy and an Entropy Inequality for the Thermodynamic Volume, Phys. Rev.D 84 (2011) 024037 [arXiv:1012.2888] [INSPIRE].
  21. [21]
    C.V. Johnson, Instability of Super-Entropic Black Holes in Extended Thermodynamics, arXiv:1906.00993 [INSPIRE].
  22. [22]
    D. Kubiznak, R.B. Mann and M. Teo, Black hole chemistry: thermodynamics with Lambda, Class. Quant. Grav.34 (2017) 063001 [arXiv:1608.06147] [INSPIRE].
  23. [23]
    D. Kubiznak and R.B. Mann, P-V criticality of charged AdS black holes, JHEP07 (2012) 033 [arXiv:1205.0559] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  24. [24]
    S. Gunasekaran, R.B. Mann and D. Kubiznak, Extended phase space thermodynamics for charged and rotating black holes and Born-Infeld vacuum polarization, JHEP11 (2012) 110 [arXiv:1208.6251] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    A. Chamblin, R. Emparan, C.V. Johnson and R.C. Myers, Charged AdS black holes and catastrophic holography, Phys. Rev.D 60 (1999) 064018 [hep-th/9902170] [INSPIRE].
  26. [26]
    A. Chamblin, R. Emparan, C.V. Johnson and R.C. Myers, Holography, thermodynamics and fluctuations of charged AdS black holes, Phys. Rev.D 60 (1999) 104026 [hep-th/9904197] [INSPIRE].ADSMathSciNetGoogle Scholar
  27. [27]
    N. Altamirano, D. Kubiznak and R.B. Mann, Reentrant phase transitions in rotating anti-de Sitter black holes, Phys. Rev.D 88 (2013) 101502 [arXiv:1306.5756] [INSPIRE].ADSGoogle Scholar
  28. [28]
    A.M. Frassino, D. Kubiznak, R.B. Mann and F. Simovic, Multiple Reentrant Phase Transitions and Triple Points in Lovelock Thermodynamics, JHEP09 (2014) 080 [arXiv:1406.7015] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  29. [29]
    N. Altamirano, D. Kubizňák, R.B. Mann and Z. Sherkatghanad, Kerr-AdS analogue of triple point and solid/liquid/gas phase transition, Class. Quant. Grav.31 (2014) 042001 [arXiv:1308.2672] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  30. [30]
    B.P. Dolan, A. Kostouki, D. Kubiznak and R.B. Mann, Isolated critical point from Lovelock gravity, Class. Quant. Grav.31 (2014) 242001 [arXiv:1407.4783] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  31. [31]
    R.A. Hennigar, R.B. Mann and E. Tjoa, Superfluid Black Holes, Phys. Rev. Lett.118 (2017) 021301 [arXiv:1609.02564] [INSPIRE].
  32. [32]
    R.A. Hennigar, E. Tjoa and R.B. Mann, Thermodynamics of hairy black holes in Lovelock gravity, JHEP02 (2017) 070 [arXiv:1612.06852] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  33. [33]
    H. Dykaar, R.A. Hennigar and R.B. Mann, Hairy black holes in cubic quasi-topological gravity, JHEP05 (2017) 045 [arXiv:1703.01633] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  34. [34]
    C.V. Johnson, Holographic Heat Engines, Class. Quant. Grav.31 (2014) 205002 [arXiv:1404.5982] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  35. [35]
    A. Chakraborty and C.V. Johnson, Benchmarking black hole heat engines, I, Int. J. Mod. Phys.D 27 (2018) 1950012 [arXiv:1612.09272] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    R.A. Hennigar, F. McCarthy, A. Ballon and R.B. Mann, Holographic heat engines: general considerations and rotating black holes, Class. Quant. Grav.34 (2017) 175005 [arXiv:1704.02314] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  37. [37]
    A. Chakraborty and C.V. Johnson, Benchmarking Black Hole Heat Engines, II, Int. J. Mod. Phys.D 27 (2018) 1950006 [arXiv:1709.00088] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    C.V. Johnson, Holographic Heat Engines as Quantum Heat Engines, arXiv:1905.09399 [INSPIRE].
  39. [39]
    W. Ahmed, H.Z. Chen, E. Gesteau, R. Gregory and A. Scoins, Conical Holographic Heat Engines, Class. Quant. Grav.36 (2019) 214001 [arXiv:1906.10289] [INSPIRE].CrossRefGoogle Scholar
  40. [40]
    Ö . Ökcü and E. Aydıner, Joule-Thomson expansion of the charged AdS black holes, Eur. Phys. J.C 77 (2017) 24 [arXiv:1611.06327] [INSPIRE].
  41. [41]
    Ö . Ökcü and E. Aydıner, Joule-Thomson expansion of Kerr-AdS black holes, Eur. Phys. J.C 78 (2018) 123 [arXiv:1709.06426] [INSPIRE].
  42. [42]
    J.-X. Mo, G.-Q. Li, S.-Q. Lan and X.-B. Xu, Joule-Thomson expansion of d-dimensional charged AdS black holes, Phys. Rev.D 98 (2018) 124032 [arXiv:1804.02650] [INSPIRE].ADSMathSciNetGoogle Scholar
  43. [43]
    B.P. Dolan, D. Kastor, D. Kubiznak, R.B. Mann and J. Traschen, Thermodynamic Volumes and Isoperimetric Inequalities for de Sitter Black Holes, Phys. Rev.D 87 (2013) 104017 [arXiv:1301.5926] [INSPIRE].ADSGoogle Scholar
  44. [44]
    D. Kubiznak and F. Simovic, Thermodynamics of horizons: de Sitter black holes and reentrant phase transitions, Class. Quant. Grav.33 (2016) 245001 [arXiv:1507.08630] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  45. [45]
    S. Mbarek and R.B. Mann, Reverse Hawking-Page Phase Transition in de Sitter Black Holes, JHEP02 (2019) 103 [arXiv:1808.03349] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  46. [46]
    F. Simovic and R. Mann, Critical Phenomena of Charged de Sitter Black Holes in Cavities, Class. Quant. Grav.36 (2019) 014002 [arXiv:1807.11875] [INSPIRE].
  47. [47]
    F. Simovic and R.B. Mann, Critical Phenomena of Born-Infeld-de Sitter Black Holes in Cavities, JHEP05 (2019) 136 [arXiv:1904.04871] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  48. [48]
    R. Gregory, D. Kastor and J. Traschen, Black Hole Thermodynamics with Dynamical Lambda, JHEP10 (2017) 118 [arXiv:1707.06586] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  49. [49]
    M. Appels, R. Gregory and D. Kubiznak, Thermodynamics of Accelerating Black Holes, Phys. Rev. Lett.117 (2016) 131303 [arXiv:1604.08812] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    M. Astorino, CFT Duals for Accelerating Black Holes, Phys. Lett.B 760 (2016) 393 [arXiv:1605.06131] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  51. [51]
    M. Astorino, Thermodynamics of Regular Accelerating Black Holes, Phys. Rev.D 95 (2017) 064007 [arXiv:1612.04387] [INSPIRE].
  52. [52]
    M. Appels, R. Gregory and D. Kubiznak, Black Hole Thermodynamics with Conical Defects, JHEP05 (2017) 116 [arXiv:1702.00490] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  53. [53]
    A. Anabalón, M. Appels, R. Gregory, D. Kubizňák, R.B. Mann and A. Ovgün, Holographic Thermodynamics of Accelerating Black Holes, Phys. Rev.D 98 (2018) 104038 [arXiv:1805.02687] [INSPIRE].
  54. [54]
    A. Anabalón, F. Gray, R. Gregory, D. Kubizňák and R.B. Mann, Thermodynamics of Charged, Rotating and Accelerating Black Holes, JHEP04 (2019) 096 [arXiv:1811.04936] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  55. [55]
    N. Abbasvandi, W. Cong, D. Kubiznak and R.B. Mann, Snapping swallowtails in accelerating black hole thermodynamics, Class. Quant. Grav.36 (2019) 104001 [arXiv:1812.00384] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  56. [56]
    N. Abbasvandi, W. Ahmed, W. Cong, D. Kubizňák and R.B. Mann, Finely Split Phase Transitions of Rotating and Accelerating Black Holes, Phys. Rev.D 100 (2019) 064027 [arXiv:1906.03379] [INSPIRE].
  57. [57]
    R. Gregory and A. Scoins, Accelerating Black Hole Chemistry, Phys. Lett.B 796 (2019) 191 [arXiv:1904.09660] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  58. [58]
    C.V. Johnson, Thermodynamic Volumes for AdS-Taub-NUT and AdS-Taub-Bolt, Class. Quant. Grav.31 (2014) 235003 [arXiv:1405.5941] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  59. [59]
    C.V. Johnson, Taub-Bolt heat engines, Class. Quant. Grav.35 (2018) 045001 [arXiv:1705.04855] [INSPIRE].
  60. [60]
    R.A. Hennigar, D. Kubizňák and R.B. Mann, Thermodynamics of Lorentzian Taub-NUT spacetimes, Phys. Rev.D 100 (2019) 064055 [arXiv:1903.08668] [INSPIRE].
  61. [61]
    A.B. Bordo, F. Gray, R.A. Hennigar and D. Kubizňák, The First Law for Rotating NUTs, arXiv:1905.06350 [INSPIRE].
  62. [62]
    A.B. Bordo, F. Gray, R.A. Hennigar and D. Kubizňák, Misner Gravitational Charges and Variable String Strengths, Class. Quant. Grav.36 (2019) 194001 [arXiv:1905.03785] [INSPIRE].CrossRefGoogle Scholar
  63. [63]
    A.B. Bordo, F. Gray and D. Kubizňák, Thermodynamics and Phase Transitions of NUTty Dyons, JHEP07 (2019) 119 [arXiv:1904.00030] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  64. [64]
    S.-W. Wei and Y.-X. Liu, Insight into the Microscopic Structure of an AdS Black Hole from a Thermodynamical Phase Transition, Phys. Rev. Lett.115 (2015) 111302 [Erratum ibid.116 (2016) 169903] [arXiv:1502.00386] [INSPIRE].
  65. [65]
    S.-W. Wei, Y.-X. Liu and R.B. Mann, Repulsive Interactions and Universal Properties of Charged Anti-de Sitter Black Hole Microstructures, Phys. Rev. Lett.123 (2019) 071103 [arXiv:1906.10840] [INSPIRE].
  66. [66]
    A. Anabalón and D. Astefanesei, On attractor mechanism of AdS 4black holes, Phys. Lett.B 727 (2013) 568 [arXiv:1309.5863] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  67. [67]
    A. Anabalon, D. Astefanesei and D. Choque, On the thermodynamics of hairy black holes, Phys. Lett.B 743 (2015) 154 [arXiv:1501.04252] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  68. [68]
    J.F. Pedraza, W. Sybesma and M.R. Visser, Hyperscaling violating black holes with spherical and hyperbolic horizons, Class. Quant. Grav.36 (2019) 054002 [arXiv:1807.09770] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  69. [69]
    D. Kastor, S. Ray and J. Traschen, Black Hole Enthalpy and Scalar Fields, Class. Quant. Grav.36 (2019) 024002 [arXiv:1807.09801] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  70. [70]
    D. Astefanesei, D. Choque, F. Gómez and R. Rojas, Thermodynamically stable asymptotically flat hairy black holes with a dilaton potential, JHEP03 (2019) 205 [arXiv:1901.01269] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  71. [71]
    C. Charmousis, B. Gouteraux, B.S. Kim, E. Kiritsis and R. Meyer, Effective Holographic Theories for low-temperature condensed matter systems, JHEP11 (2010) 151 [arXiv:1005.4690] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  72. [72]
    A. Anabalon, D. Astefanesei and R. Mann, Holographic equation of state in fluid/gravity duality, Phys. Lett.B 770 (2017) 272 [arXiv:1604.05595] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  73. [73]
    A. Anabalon, T. Andrade, D. Astefanesei and R. Mann, Universal Formula for the Holographic Speed of Sound, Phys. Lett.B 781 (2018) 547 [arXiv:1702.00017] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  74. [74]
    A. Sen, Black hole entropy function and the attractor mechanism in higher derivative gravity, JHEP09 (2005) 038 [hep-th/0506177] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  75. [75]
    D. Astefanesei, K. Goldstein, R.P. Jena, A. Sen and S.P. Trivedi, Rotating attractors, JHEP10 (2006) 058 [hep-th/0606244] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  76. [76]
    S. Sachdev, Universal low temperature theory of charged black holes with AdS 2horizons, J. Math. Phys.60 (2019) 052303 [arXiv:1902.04078] [INSPIRE].
  77. [77]
    D. Kastor, S. Ray and J. Traschen, Enthalpy and the Mechanics of AdS Black Holes, Class. Quant. Grav.26 (2009) 195011 [arXiv:0904.2765] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  78. [78]
    V. Balasubramanian and P. Kraus, A Stress tensor for Anti-de Sitter gravity, Commun. Math. Phys.208 (1999) 413 [hep-th/9902121] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  79. [79]
    R.B. Mann, Misner string entropy, Phys. Rev.D 60 (1999) 104047 [hep-th/9903229] [INSPIRE].ADSMathSciNetGoogle Scholar
  80. [80]
    R. Emparan, C.V. Johnson and R.C. Myers, Surface terms as counterterms in the AdS/CFT correspondence, Phys. Rev.D 60 (1999) 104001 [hep-th/9903238] [INSPIRE].ADSMathSciNetGoogle Scholar
  81. [81]
    S.W. Hawking and S.F. Ross, Duality between electric and magnetic black holes, Phys. Rev.D 52 (1995) 5865 [hep-th/9504019] [INSPIRE].ADSMathSciNetGoogle Scholar
  82. [82]
    S.W. Hawking and D.N. Page, Thermodynamics of Black Holes in anti-de Sitter Space, Commun. Math. Phys.87 (1983) 577 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  83. [83]
    A. Anabalon, D. Astefanesei and R. Mann, Exact asymptotically flat charged hairy black holes with a dilaton potential, JHEP10 (2013) 184 [arXiv:1308.1693] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    J.-P. Hong, M. Suzuki and M. Yamada, Charged black holes in non-linear Q-clouds with O(3) symmetry, arXiv:1907.04982 [INSPIRE].
  85. [85]
    A. Aceña, A. Anabalón, D. Astefanesei and R. Mann, Hairy planar black holes in higher dimensions, JHEP01 (2014) 153 [arXiv:1311.6065] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  86. [86]
    A. Acena, A. Anabalon and D. Astefanesei, Exact hairy black brane solutions in AdS 5and holographic RG flows, Phys. Rev.D 87 (2013) 124033 [arXiv:1211.6126] [INSPIRE].ADSGoogle Scholar
  87. [87]
    A. Anabalon, D. Astefanesei and J. Oliva, Hairy Black Hole Stability in AdS, Quantum Mechanics on the Half-Line and Holography, JHEP10 (2015) 068 [arXiv:1507.05520] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  88. [88]
    A. Anabalon and D. Astefanesei, Black holes in ω-defomed gauged N = 8 supergravity, Phys. Lett.B 732 (2014) 137 [arXiv:1311.7459] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  89. [89]
    A. Anabalón, D. Astefanesei and D. Choque, Hairy AdS Solitons, Phys. Lett.B 762 (2016) 80 [arXiv:1606.07870] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  90. [90]
    A. Anabalón, D. Astefanesei, A. Gallerati and M. Trigiante, Hairy Black Holes and Duality in an Extended Supergravity Model, JHEP04 (2018) 058 [arXiv:1712.06971] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  91. [91]
    K. Skenderis, Asymptotically Anti-de Sitter space-times and their stress energy tensor, Int. J. Mod. Phys.A 16 (2001) 740 [hep-th/0010138] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  92. [92]
    M. Henningson and K. Skenderis, The Holographic Weyl anomaly, JHEP07 (1998) 023 [hep-th/9806087] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  93. [93]
    I. Papadimitriou, Multi-Trace Deformations in AdS/CFT: Exploring the Vacuum Structure of the Deformed CFT, JHEP05 (2007) 075 [hep-th/0703152] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  94. [94]
    D. Marolf and S.F. Ross, Boundary Conditions and New Dualities: Vector Fields in AdS/CFT, JHEP11 (2006) 085 [hep-th/0606113] [INSPIRE].ADSCrossRefGoogle Scholar
  95. [95]
    A. Anabalon, D. Astefanesei, D. Choque and C. Martinez, Trace Anomaly and Counterterms in Designer Gravity, JHEP03 (2016) 117 [arXiv:1511.08759] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  96. [96]
    D. Astefanesei, R.B. Mann and C. Stelea, Nuttier bubbles, JHEP01 (2006) 043 [hep-th/0508162] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  97. [97]
    D. Astefanesei and G.C. Jones, S-branes and (anti-)bubbles in (A)dS space, JHEP06 (2005) 037 [hep-th/0502162] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  98. [98]
    D. Astefanesei, R.B. Mann and E. Radu, Nut charged space-times and closed timelike curves on the boundary, JHEP01 (2005) 049 [hep-th/0407110] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  99. [99]
    D. Astefanesei, R.B. Mann and E. Radu, Breakdown of the entropy/area relationship for NUT-charged spacetimes, Phys. Lett.B 620 (2005) 1 [hep-th/0406050] [INSPIRE].ADSCrossRefGoogle Scholar
  100. [100]
    V. Balasubramanian and S.F. Ross, The Dual of nothing, Phys. Rev.D 66 (2002) 086002 [hep-th/0205290] [INSPIRE].
  101. [101]
    V. Balasubramanian, K. Larjo and J. Simon, Much ado about nothing, Class. Quant. Grav.22 (2005) 4149 [hep-th/0502111] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  102. [102]
    D. Astefanesei, N. Banerjee and S. Dutta, (Un)attractor black holes in higher derivative AdS gravity, JHEP11 (2008) 070 [arXiv:0806.1334] [INSPIRE].
  103. [103]
    R.B. Mann and R. McNees, Boundary Terms Unbound! Holographic Renormalization of Asymptotically Linear Dilaton Gravity, Class. Quant. Grav.27 (2010) 065015 [arXiv:0905.3848] [INSPIRE].
  104. [104]
    J.D. Brown and J.W. York, Jr., Quasilocal energy and conserved charges derived from the gravitational action, Phys. Rev.D 47 (1993) 1407 [gr-qc/9209012] [INSPIRE].
  105. [105]
    R.C. Myers, Stress tensors and Casimir energies in the AdS/CFT correspondence, Phys. Rev.D 60 (1999) 046002 [hep-th/9903203] [INSPIRE].
  106. [106]
    A. Ashtekar and A. Magnon, Asymptotically anti-de Sitter space-times, Class. Quant. Grav.1 (1984) L39 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  107. [107]
    A. Ashtekar and S. Das, Asymptotically Anti-de Sitter space-times: Conserved quantities, Class. Quant. Grav.17 (2000) L17 [hep-th/9911230] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  108. [108]
    A. Anabalon, D. Astefanesei and C. Martinez, Mass of asymptotically anti-de Sitter hairy spacetimes, Phys. Rev.D 91 (2015) 041501 [arXiv:1407.3296] [INSPIRE].
  109. [109]
    V. Kulinskii, The critical compressibility factor of fluids from the Global Isomorphism approach, J. Chem. Phys.139 (2013) 184119 [arXiv:1308.5246].ADSCrossRefGoogle Scholar
  110. [110]
    Q. Wei and D.R. Herschbach, Isomorphism in Fluid Phase Diagrams: Kulinskii Transformations Related to the Acentric Factor, J. Chem. Phys.117 (2013) 22438.CrossRefGoogle Scholar
  111. [111]
    D. Garfinkle, G.T. Horowitz and A. Strominger, Charged black holes in string theory, Phys. Rev.D 43 (1991) 3140 [Erratum ibid.D 45 (1992) 3888] [INSPIRE].
  112. [112]
    A. Karch and B. Robinson, Holographic Black Hole Chemistry, JHEP12 (2015) 073 [arXiv:1510.02472] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  113. [113]
    M. Sinamuli and R.B. Mann, Higher Order Corrections to Holographic Black Hole Chemistry, Phys. Rev.D 96 (2017) 086008 [arXiv:1706.04259] [INSPIRE].
  114. [114]
    D. Astefanesei, R. Ballesteros, D. Choque and R. Rojas, Scalar charges and the first law of black hole thermodynamics, Phys. Lett.B 782 (2018) 47 [arXiv:1803.11317] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  115. [115]
    G.W. Gibbons, R. Kallosh and B. Kol, Moduli, scalar charges and the first law of black hole thermodynamics, Phys. Rev. Lett.77 (1996) 4992 [hep-th/9607108] [INSPIRE].ADSCrossRefGoogle Scholar
  116. [116]
    M. Cvetič et al., Embedding AdS black holes in ten-dimensions and eleven-dimensions, Nucl. Phys.B 558 (1999) 96 [hep-th/9903214] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Dumitru Astefanesei
    • 1
    Email author
  • Robert B. Mann
    • 2
    • 3
  • Raúl Rojas
    • 1
  1. 1.Pontificia Universidad Católica de Valparaíso, Instituto de FísicaValparaísoChile
  2. 2.Department of Physics and AstronomyUniversity of WaterlooWaterlooCanada
  3. 3.Perimeter InstituteWaterlooCanada

Personalised recommendations