Journal of High Energy Physics

, 2019:39 | Cite as

Holographic subregion complexity in general Vaidya geometry

  • Yi Ling
  • Yuxuan LiuEmail author
  • Chao Niu
  • Yikang Xiao
  • Cheng-Yong Zhang
Open Access
Regular Article - Theoretical Physics


We investigate general features of the evolution of holographic subregion complexity (HSC) on Vaidya-AdS metric with a general form. The spacetime is dual to a sudden quench process in quantum system and HSC is a measure of the “difference” between two mixed states. Based on the subregion CV (Complexity equals Volume) conjecture and in the large size limit, we extract out three distinct stages during the evolution of HSC: the stage of linear growth at the early time, the stage of linear growth with a slightly small rate during the intermediate time and the stage of linear decrease at the late time. The growth rates of the first two stages are compared with the Lloyd bound. We find that with some choices of certain parameter, the Lloyd bound is always saturated at the early time, while at the intermediate stage, the growth rate is always less than the Lloyd bound. Moreover, the fact that the behavior of CV conjecture and its version of the subregion in Vaidya spacetime implies that they are different even in the large size limit.


AdS-CFT Correspondence Gauge-gravity correspondence Black Holes 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    D. Stanford and L. Susskind, Complexity and shock wave geometries, Phys. Rev.D 90 (2014) 126007 [arXiv:1406.2678] [INSPIRE].ADSGoogle Scholar
  2. [2]
    A.R. Brown et al., Holographic complexity equals bulk action?, Phys. Rev. Lett.116 (2016) 191301 [arXiv:1509.07876] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    M. Alishahiha, Holographic complexity, Phys. Rev.D 92 (2015) 126009 [arXiv:1509.06614] [INSPIRE].ADSMathSciNetGoogle Scholar
  4. [4]
    D. Carmi, R.C. Myers and P. Rath, Comments on holographic complexity, JHEP03 (2017) 118 [arXiv:1612.00433] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    E. Bakhshaei, A. Mollabashi and A. Shirzad, Holographic subregion complexity for singular surfaces, Eur. Phys. J.C 77 (2017) 665 [arXiv:1703.03469] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    M. Lezgi and M. Ali-Akbari, A note on holographic subregion complexity and QCD phase transition, arXiv:1908.01303 [INSPIRE].
  7. [7]
    A. Bhattacharya, K.T. Grosvenor and S. Roy, Entanglement entropy and subregion complexity in thermal perturbations around pure-AdS, arXiv:1905.02220 [INSPIRE].
  8. [8]
    Y.-T. Zhou, M. Ghodrati, X.-M. Kuang and J.-P. Wu, Evolutions of entanglement and complexity after a thermal quench in massive gravity theory, Phys. Rev.D 100 (2019) 066003 [arXiv:1907.08453] [INSPIRE].
  9. [9]
    S.-J. Zhang, Subregion complexity in holographic thermalization with dS boundary, Eur. Phys. J.C 79 (2019) 715 [arXiv:1905.10605] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    M. Fujita, Holographic subregion complexity of a (1 + 1)-dimensional p-wave superconductor, PTEP2019 (2019) 063B04 [arXiv:1810.09659] [INSPIRE].
  11. [11]
    S. Karar, R. Mishra and S. Gangopadhyay, Holographic complexity of boosted black brane and Fisher information, Phys. Rev.D 100 (2019) 026006 [arXiv:1904.13090] [INSPIRE].
  12. [12]
    R. Auzzi, S. Baiguera, A. Mitra, G. Nardelli and N. Zenoni, Subsystem complexity in warped AdS, JHEP09 (2019) 114 [arXiv:1906.09345] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    A. Ghosh and R. Mishra, Inhomogeneous Jacobi equation and holographic subregion complexity, arXiv:1907.11757 [INSPIRE].
  14. [14]
    R. Auzzi et al., On volume subregion complexity in Vaidya spacetime, arXiv:1908.10832 [INSPIRE].
  15. [15]
    P. Braccia, A.L. Cotrone and E. Tonni, Complexity in the presence of a boundary, arXiv:1910.03489 [INSPIRE].
  16. [16]
    C.A. Agón, M. Headrick and B. Swingle, Subsystem complexity and holography, JHEP02 (2019) 145 [arXiv:1804.01561] [INSPIRE].
  17. [17]
    E. Caceres and M.-L. Xiao, Complexity-action of subregions with corners, JHEP03 (2019) 062 [arXiv:1809.09356] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    M. Alishahiha, K. Babaei Velni and M.R. Mohammadi Mozaffar, Black hole subregion action and complexity, Phys. Rev.D 99 (2019) 126016 [arXiv:1809.06031] [INSPIRE].ADSGoogle Scholar
  19. [19]
    O. Ben-Ami and D. Carmi, On volumes of subregions in holography and complexity, JHEP11 (2016) 129 [arXiv:1609.02514] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    R. Abt et al., Holographic subregion complexity from kinematic space, JHEP01 (2019) 012 [arXiv:1805.10298] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    L.-P. Du, S.-F. Wu and H.-B. Zeng, Holographic complexity of the disk subregion in (2 + 1)-dimensional gapped systems, Phys. Rev.D 98 (2018) 066005 [arXiv:1803.08627] [INSPIRE].
  22. [22]
    R. Abt et al., Topological complexity in AdS 3/CFT 2 , Fortsch. Phys.66 (2018) 1800034 [arXiv:1710.01327] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  23. [23]
    P. Roy and T. Sarkar, Subregion holographic complexity and renormalization group flows, Phys. Rev.D 97 (2018) 086018 [arXiv:1708.05313] [INSPIRE].
  24. [24]
    S. Banerjee, J. Erdmenger and D. Sarkar, Connecting Fisher information to bulk entanglement in holography, JHEP08 (2018) 001 [arXiv:1701.02319] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    M. Kord Zangeneh, Y.C. Ong and B. Wang, Entanglement entropy and complexity for one-dimensional holographic superconductors, Phys. Lett.B 771 (2017) 235 [arXiv:1704.00557] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    A. Bhattacharya and S. Roy, Holographic entanglement entropy, subregion complexity and fisher information metric of ‘black’ non-SUSY D3 brane, Phys. Lett.B 799 (2019) 135032 [arXiv:1807.06361] [INSPIRE].CrossRefGoogle Scholar
  27. [27]
    S.-J. Zhang, Subregion complexity and confinement–deconfinement transition in a holographic QCD model, Nucl. Phys.B 938 (2019) 154 [arXiv:1808.08719] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    P. Roy and T. Sarkar, Note on subregion holographic complexity, Phys. Rev.D 96 (2017) 026022 [arXiv:1701.05489] [INSPIRE].
  29. [29]
    B. Chen et al., Holographic subregion complexity under a thermal quench, JHEP07 (2018) 034 [arXiv:1803.06680] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    Y. Ling, Y. Liu and C.-Y. Zhang, Holographic subregion complexity in Einstein-Born-Infeld theory, Eur. Phys. J.C 79 (2019) 194 [arXiv:1808.10169] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    H. Liu and S.J. Suh, Entanglement growth during thermalization in holographic systems, Phys. Rev.D 89 (2014) 066012 [arXiv:1311.1200] [INSPIRE].
  32. [32]
    V. Balasubramanian et al., Thermalization of strongly coupled field theories, Phys. Rev. Lett.106 (2011) 191601 [arXiv:1012.4753] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    V. Balasubramanian et al., Holographic thermalization, Phys. Rev.D 84 (2011) 026010 [arXiv:1103.2683] [INSPIRE].
  34. [34]
    S. Chapman, H. Marrochio and R.C. Myers, Holographic complexity in Vaidya spacetimes. Part I, JHEP06 (2018) 046 [arXiv:1804.07410] [INSPIRE].
  35. [35]
    R.-Q. Yang, C. Niu, C.-Y. Zhang and K.-Y. Kim, Comparison of holographic and field theoretic complexities for time dependent thermofield double states, JHEP02 (2018) 082 [arXiv:1710.00600] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    L. Susskind and Y. Zhao, Switchbacks and the bridge to nowhere, arXiv:1408.2823 [INSPIRE].
  37. [37]
    L. Susskind, New concepts for old black holes, arXiv:1311.3335 [INSPIRE].
  38. [38]
    A.R. Brown and L. Susskind, Second law of quantum complexity, Phys. Rev.D 97 (2018) 086015 [arXiv:1701.01107] [INSPIRE].
  39. [39]
    E. Cáceres, J. Couch, S. Eccles and W. Fischler, Holographic purification complexity, Phys. Rev.D 99 (2019) 086016 [arXiv:1811.10650] [INSPIRE].
  40. [40]
    H.A. Camargo et al., Complexity as a novel probe of quantum quenches: universal scalings and purifications, Phys. Rev. Lett.122 (2019) 081601 [arXiv:1807.07075] [INSPIRE].
  41. [41]
    M. Ghodrati et al., The connection between holographic entanglement and complexity of purification, JHEP09 (2019) 009 [arXiv:1902.02475] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Yi Ling
    • 1
    • 2
  • Yuxuan Liu
    • 1
    • 2
    Email author
  • Chao Niu
    • 3
  • Yikang Xiao
    • 1
    • 2
  • Cheng-Yong Zhang
    • 3
  1. 1.Institute of High Energy PhysicsChinese Academy of SciencesBeijingChina
  2. 2.School of PhysicsUniversity of Chinese Academy of SciencesBeijingChina
  3. 3.Department of Physics and Siyuan LaboratoryJinan UniversityGuangzhouChina

Personalised recommendations