Advertisement

Journal of High Energy Physics

, 2019:34 | Cite as

Benchmarking simplified template cross sections in W H production

  • Johann Brehmer
  • Sally Dawson
  • Samuel HomillerEmail author
  • Felix Kling
  • Tilman Plehn
Open Access
Regular Article - Theoretical Physics
  • 17 Downloads

Abstract

Simplified template cross sections define a framework for the measurement and dissemination of kinematic information in Higgs measurements. We benchmark the currently proposed setup in an analysis of dimension-6 effective field theory operators for W H production. Calculating the Fisher information allows us to quantify the sensitivity of this framework to new physics and study its dependence on phase space. New machine- learning techniques let us compare the simplified template cross section framework to the full, high-dimensional kinematic information. We show that the way in which we truncate the effective theory has a sizable impact on the definition of the optimal simplified template cross sections.

Keywords

Higgs Physics Beyond Standard Model Effective Field Theories 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    S. Dawson, C. Englert and T. Plehn, Higgs physics: it ain’t over till it’s over, Phys. Rept.816 (2019) 1 [arXiv:1808.01324] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    I. Brivio and M. Trott, The standard model as an effective field theory, Phys. Rept.793 (2019) 1 [arXiv:1706.08945] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    A. Butter et al., The Gauge-Higgs Legacy of the LHC Run I, JHEP07 (2016) 152 [arXiv:1604.03105] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    I. Brivio, J. Gonzalez-Fraile, M.C. Gonzalez-Garcia and L. Merlo, The complete HEFT Lagrangian after the LHC Run I, Eur. Phys. J.C 76 (2016) 416 [arXiv:1604.06801] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    S. Banerjee, S. Mukhopadhyay and B. Mukhopadhyaya, Higher dimensional operators and the LHC Higgs data: The role of modified kinematics, Phys. Rev.D 89 (2014) 053010 [arXiv:1308.4860] [INSPIRE].
  6. [6]
    S. Di Vita et al., A global view on the Higgs self-coupling at lepton colliders, JHEP02 (2018) 178 [arXiv:1711.03978] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    J. Ellis, C.W. Murphy, V. Sanz and T. You, Updated global SMEFT fit to Higgs, diboson and electroweak data, JHEP06 (2018) 146 [arXiv:1803.03252] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    E. da Silva Almeida et al., Electroweak sector under scrutiny: a combined analysis of LHC and electroweak precision data, Phys. Rev.D 99 (2019) 033001 [arXiv:1812.01009] [INSPIRE].
  9. [9]
    A. Biekötter, T. Corbett and T. Plehn, The gauge-Higgs legacy of the LHC Run II, SciPost Phys.6 (2019) 064 [arXiv:1812.07587] [INSPIRE].
  10. [10]
    ATLAS collaboration, Reproducing searches for new physics with the ATLAS experiment through publication of full statistical likelihoods, ATL-PHYS-PUB-2019-029 (2019).Google Scholar
  11. [11]
    CMS collaboration, Simplified likelihood for the re-interpretation of public CMS results, CMS-NOTE-2017-001 (2017).Google Scholar
  12. [12]
    K. Cranmer, S. Kreiss, D. Lopez-Val and T. Plehn, Decoupling theoretical uncertainties from measurements of the Higgs boson, Phys. Rev.D 91 (2015) 054032 [arXiv:1401.0080] [INSPIRE].
  13. [13]
    E. Maguire, L. Heinrich and G. Watt, HEPData: a repository for high energy physics data, J. Phys. Conf. Ser.898 (2017) 102006 [arXiv:1704.05473] [INSPIRE].CrossRefGoogle Scholar
  14. [14]
    C.N. Leung, S.T. Love and S. Rao, Low-energy manifestations of a new interaction scale: operator analysis, Z. Phys.C 31 (1986) 433 [INSPIRE].ADSGoogle Scholar
  15. [15]
    W. Buchmüller and D. Wyler, Effective Lagrangian analysis of new interactions and flavor conservation, Nucl. Phys.B 268 (1986) 621 [INSPIRE].
  16. [16]
    M.C. Gonzalez-Garcia, Anomalous Higgs couplings, Int. J. Mod. Phys.A 14 (1999) 3121 [hep-ph/9902321] [INSPIRE].
  17. [17]
    C. Grojean, M. Montull and M. Riembau, Diboson at the LHC vs LEP, JHEP03 (2019) 020 [arXiv:1810.05149] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    J. de Blas et al., Electroweak precision constraints at present and future colliders PoS(ICHEP2016)690 [arXiv:1611.05354] [INSPIRE].
  19. [19]
    F. Tackmann et al., Simplified template cross sections, LHCHXSWG-DRAFT-INT-2016-006 (2016).Google Scholar
  20. [20]
    N. Berger et al., Simplified template cross sections — Stage 1.1, arXiv:1906.02754 [INSPIRE].
  21. [21]
    J. Brehmer, K. Cranmer, F. Kling and T. Plehn, Better Higgs boson measurements through information geometry, Phys. Rev.D 95 (2017) 073002 [arXiv:1612.05261] [INSPIRE].
  22. [22]
    J. Brehmer, F. Kling, T. Plehn and T.M.P. Tait, Better Higgs-CP tests through information geometry, Phys. Rev.D 97 (2018) 095017 [arXiv:1712.02350] [INSPIRE].
  23. [23]
    J. Brehmer, K. Cranmer, G. Louppe and J. Pavez, A guide to constraining effective field theories with machine learning, Phys. Rev.D 98 (2018) 052004 [arXiv:1805.00020] [INSPIRE].
  24. [24]
    J. Brehmer, K. Cranmer, G. Louppe and J. Pavez, Constraining effective field theories with machine learning, Phys. Rev. Lett.121 (2018) 111801 [arXiv:1805.00013] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    J. Brehmer, G. Louppe, J. Pavez and K. Cranmer, Mining gold from implicit models to improve likelihood-free inference, arXiv:1805.12244 [INSPIRE].
  26. [26]
    J. Brehmer, F. Kling, I. Espejo and K. Cranmer, MadMiner: machine learning-based inference for particle physics, arXiv:1907.10621 [INSPIRE].
  27. [27]
    F.F. Freitas, C.K. Khosa and V. Sanz, Exploring the standard model EFT in VH production with machine learning, Phys. Rev.D 100 (2019) 035040 [arXiv:1902.05803] [INSPIRE].
  28. [28]
    T. Corbett, O.J.P. Eboli, J. Gonzalez-Fraile and M.C. Gonzalez-Garcia, Robust determination of the Higgs couplings: power to the data, Phys. Rev.D 87 (2013) 015022 [arXiv:1211.4580] [INSPIRE].
  29. [29]
    B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-six terms in the standard model Lagrangian, JHEP10 (2010) 085 [arXiv:1008.4884] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    I. Brivio and M. Trott, Scheming in the SMEFT … and a reparameterization invariance!, JHEP07 (2017) 148 [arXiv:1701.06424] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    L. Berthier, M. Bjørn and M. Trott, Incorporating doubly resonant W ±data in a global fit of SMEFT parameters to lift flat directions, JHEP09 (2016) 157 [arXiv:1606.06693] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    J. Haller et al., Update of the global electroweak fit and constraints on two-Higgs-doublet models, Eur. Phys. J.C 78 (2018) 675 [arXiv:1803.01853] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    A. Dedes et al., Feynman rules for the standard model effective field theory in R ξ-gauges, JHEP06 (2017) 143 [arXiv:1704.03888] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    J. Nakamura, Polarisations of the Z and W bosons in the processes pp → Z H and pp → W ±H , JHEP08 (2017) 008 [arXiv:1706.01816] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    J. Butterworth et al., PDF4LHC recommendations for LHC Run II, J. Phys.G 43 (2016) 023001 [arXiv:1510.03865] [INSPIRE].
  37. [37]
    V. Hirschi and O. Mattelaer, Automated event generation for loop-induced processes, JHEP10 (2015) 146 [arXiv:1507.00020] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    I. Brivio, Y. Jiang and M. Trott, The SMEFTsim package, theory and tools, JHEP12 (2017) 070 [arXiv:1709.06492] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    ATLAS collaboration, Observation of H → b \( \overline{b} \)decays and V H production with the ATLAS detector, Phys. Lett.B 786 (2018) 59 [arXiv:1808.08238] [INSPIRE].
  40. [40]
    CMS collaboration, Observation of Higgs boson decay to bottom quarks, Phys. Rev. Lett.121 (2018) 121801 [arXiv:1808.08242] [INSPIRE].
  41. [41]
    ATLAS collaboration, Performance of missing transverse momentum reconstruction with the ATLAS detector using proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Eur. Phys. J.C 78 (2018) 903 [arXiv:1802.08168] [INSPIRE].
  42. [42]
    K. Cranmer and T. Plehn, Maximum significance at the LHC and Higgs decays to muons, Eur. Phys. J.C 51 (2007) 415 [hep-ph/0605268] [INSPIRE].
  43. [43]
    D. Atwood and A. Soni, Analysis for magnetic moment and electric dipole moment form-factors of the top quark via e +e → t \( \overline{t} \), Phys. Rev.D 45 (1992) 2405 [INSPIRE].ADSGoogle Scholar
  44. [44]
    M. Davier, L. Duflot, F. Le Diberder and A. Rouge, The optimal method for the measurement of tau polarization, Phys. Lett.B 306 (1993) 411 [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    M. Diehl and O. Nachtmann, Optimal observables for the measurement of three gauge boson couplings in e +e → W +W , Z. Phys.C 62 (1994) 397 [INSPIRE].ADSGoogle Scholar
  46. [46]
    K. Kondo, Dynamical likelihood method for reconstruction of events with missing momentum. 1: method and toy models, J. Phys. Soc. Jap.57 (1988) 4126 [INSPIRE].
  47. [47]
    R.A. Fisher, The detection of linkage with “dominant” abnormalities, Ann. Eugenics6 (1935) 187.CrossRefGoogle Scholar
  48. [48]
    J. Brehmer, et al., Effective LHC measurements with matrix elements and machine learning, in the proceedings of the 19thInternational Workshop on Advanced Computing and Analysis Techniques in Physics Research: Empowering the revolution: Bringing Machine Learning to High Performance Computing (ACAT 2019), March 11–15, Saas-Fee, Switzerland (2019), arXiv:1906.01578 [INSPIRE].
  49. [49]
    D.P. Kingma and J. Ba, Adam: a method for stochastic optimization, arXiv:1412.6980 [INSPIRE].
  50. [50]
    S.S. Wilks, The large-sample distribution of the likelihood ratio for testing composite hypotheses, Annals Math. Statist.9 (1938) 60.CrossRefGoogle Scholar
  51. [51]
    A. Wald, Tests of statistical hypotheses concerning several parameters when the number of observations is large, Trans. Amer. Math. Soc.54 (1943) 426.MathSciNetCrossRefGoogle Scholar
  52. [52]
    G. Panico, F. Riva and A. Wulzer, Diboson Interference Resurrection, Phys. Lett.B 776 (2018) 473 [arXiv:1708.07823] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    M. Stoye et al., Likelihood-free inference with an improved cross-entropy estimator, arXiv:1808.00973 [INSPIRE].
  54. [54]
    I. Brivio et al., Another fit of the dimension-6 top sector, in preparation (2019).Google Scholar
  55. [55]
    A. Biekötter, J. Brehmer and T. Plehn, Extending the limits of Higgs effective theory, Phys. Rev.D 94 (2016) 055032 [arXiv:1602.05202] [INSPIRE].
  56. [56]
    T. Plehn, P. Schichtel and D. Wiegand, Where boosted significances come from, Phys. Rev.D 89 (2014) 054002 [arXiv:1311.2591] [INSPIRE].
  57. [57]
    ATLAS collaboration, Measurement of V H, H → b \( \overline{b} \)production as a function of the vector-boson transverse momentum in 13 TeV pp collisions with the ATLAS detector, JHEP05 (2019) 141 [arXiv:1903.04618] [INSPIRE].
  58. [58]
    F. Kling, T. Plehn and P. Schichtel, Maximizing the significance in Higgs boson pair analyses, Phys. Rev.D 95 (2017) 035026 [arXiv:1607.07441] [INSPIRE].
  59. [59]
    S. Baerjee et al., Probing electroweak precision physics via boosted Higgs-strahlung at the LHC, Phys. Rev.D98 (2018) 095012 [arXiv:1807.01796].
  60. [60]
    R. Franceschini et al., Electroweak precision tests in high-energy diboson processes, JHEP02 (2018) 111 [arXiv:1712.01310] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    DELPHES 3 collaboration, DELPHES 3, a modular framework for fast simulation of a generic collider experiment, JHEP02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
  62. [62]
    T. Kluyver et al., Jupyter notebooks — A publishing format for reproducible computational workflows, talk given at the International Conference on Electronic Publishing (ELPUB), June 7–9, Göttingen, Germany (2016).Google Scholar
  63. [63]
    J. Brehmer, F. Kling, I. Espejo and K. Cranmer, MadMiner: an inference toolkit for particle physics., on Zenodo.Google Scholar
  64. [64]
    J.D. Hunter, Matplotlib: a 2d graphics environment, Comput. Sci. Engineer.9 (2007) 90.ADSCrossRefGoogle Scholar
  65. [65]
    T. Oliphant, NumPy: a guide to NumPy, Trelgol Publishing, U.S.A. (2006).Google Scholar
  66. [66]
    Lukas, lukasheinrich/pylhe v0.0.4, on Zenodo.Google Scholar
  67. [67]
    T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun.191 (2015) 159 [arXiv:1410.3012] [INSPIRE].
  68. [68]
    G. Van Rossum and F.L. Drake Jr., Python tutorial, Centrum voor Wiskunde en Informatica, Amsterdam The Netherlands (1995).Google Scholar
  69. [69]
    A. Paszke et al., Automatic differentiation in pytorch, talk given at the Conference on Neural Information Processing Systems (NIPS-W), December 4–9, Long Beach, U.S.A. (2017).Google Scholar
  70. [70]
    E. Rodrigues, The Scikit-HEP project, EPJ Web Conf.214 (2019) 06005 [arXiv:1905.00002] [INSPIRE].
  71. [71]
    F. Pedregosa et al., Scikit-learn: machine learning in Python, J. Machine Learn. Res.12 (2011) 2825.MathSciNetzbMATHGoogle Scholar
  72. [72]
    J. Pivarski et al., scikit-hep/uproot: 3.7.2, on Zenodo.Google Scholar
  73. [73]
    CMS collaboration, Observation of Higgs boson decay to bottom quarks, Phys. Rev. Lett.121 (2018) 121801 [arXiv:1808.08242] [INSPIRE].
  74. [74]
    O. Mattelaer, On the maximal use of Monte Carlo samples: re-weighting events at NLO accuracy, Eur. Phys. J.C 76 (2016) 674 [arXiv:1607.00763] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Center for Cosmology and Particle Physics, Center for Data Science, New York UniversityNew YorkU.S.A.
  2. 2.Department of PhysicsBrookhaven National LaboratoryUptonU.S.A.
  3. 3.C. N. Yang Institute for Theoretical PhysicsStony Brook UniversityStony BrookU.S.A.
  4. 4.Department of Physics and AstronomyUniversity of CaliforniaIrvineU.S.A.
  5. 5.SLAC National Accelerator LaboratoryMenlo ParkU.S.A.
  6. 6.Institut für Theoretische PhysikUniversität HeidelbergHidelbergGermany

Personalised recommendations