Advertisement

Journal of High Energy Physics

, 2019:29 | Cite as

Loop-enhanced rate of neutrinoless double beta decay

  • Werner Rodejohann
  • Xun-Jie XuEmail author
Open Access
Regular Article - Theoretical Physics
  • 16 Downloads

Abstract

Neutrino masses can be generated radiatively. In such scenarios their masses are calculated by evaluating a self-energy diagram with vanishing external momentum, i.e. taking only the leading order term in a momentum expansion. The difference between the full self-energy and the mass is experimentally difficult to access, since one needs off-shell neutrinos to observe it. However, massive Majorana neutrinos that mediate neutrinoless double beta decay (0νββ) are off-shell, with the virtuality of order 100 MeV. If the energy scale of the self-energy loop is of the order of this virtuality, the amplitude of double beta decay can be modified by the unsuppressed loop effect. This can have a drastic impact on the interpretation of future observations or limits of the 0νββ decay.

Keywords

Beyond Standard Model Neutrino Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    M.J. Dolinski, A.W.P. Poon and W. Rodejohann, Neutrinoless Double-Beta Decay: Status and Prospects, submitted to Ann. Rev. Nucl. Part. Phys. (2019) [arXiv:1902.04097] [INSPIRE].
  2. [2]
    W. Rodejohann, Neutrino-less Double Beta Decay and Particle Physics, Int. J. Mod. Phys.E 20 (2011) 1833 [arXiv:1106.1334] [INSPIRE].
  3. [3]
    F.F. Deppisch, M. Hirsch and H. Pas, Neutrinoless Double Beta Decay and Physics Beyond the Standard Model, J. Phys.G 39 (2012) 124007 [arXiv:1208.0727] [INSPIRE].
  4. [4]
    L. Graf, F.F. Deppisch, F. Iachello and J. Kotila, Short-Range Neutrinoless Double Beta Decay Mechanisms, Phys. Rev.D 98 (2018) 095023 [arXiv:1806.06058] [INSPIRE].
  5. [5]
    K.S. Babu and C.N. Leung, Classification of effective neutrino mass operators, Nucl. Phys.B 619 (2001) 667 [hep-ph/0106054] [INSPIRE].
  6. [6]
    E. Ma, Neutrino Mass: Mechanisms and Models, arXiv:0905.0221 [INSPIRE].
  7. [7]
    F. Bonnet, M. Hirsch, T. Ota and W. Winter, Systematic study of the d = 5 Weinberg operator at one-loop order, JHEP07 (2012) 153 [arXiv:1204.5862] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    D. Aristizabal Sierra, A. Degee, L. Dorame and M. Hirsch, Systematic classification of two-loop realizations of the Weinberg operator, JHEP03 (2015) 040 [arXiv:1411.7038] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    C. Klein, M. Lindner and S. Ohmer, Minimal Radiative Neutrino Masses, JHEP03 (2019) 018 [arXiv:1901.03225] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    Y. Cai, J. Herrero-García, M.A. Schmidt, A. Vicente and R.R. Volkas, From the trees to the forest: a review of radiative neutrino mass models, Front. in Phys.5 (2017) 63 [arXiv:1706.08524] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    F. Šimkovic, A. Smetana and P. Vogel, 0νββ nuclear matrix elements, neutrino potentials and SU(4) symmetry, Phys. Rev.C 98 (2018) 064325 [arXiv:1808.05016] [INSPIRE].
  12. [12]
    N. Shimizu, J. Menéndez and K. Yako, Double Gamow-Teller Transitions and its Relation to Neutrinoless ββ Decay, Phys. Rev. Lett.120 (2018) 142502 [arXiv:1709.01088] [INSPIRE].
  13. [13]
    I. Bischer, W. Rodejohann and X.-J. Xu, Loop-induced Neutrino Non-Standard Interactions, JHEP10 (2018) 096 [arXiv:1807.08102] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    X.-J. Xu, Tensor and scalar interactions of neutrinos may lead to observable neutrino magnetic moments, Phys. Rev.D 99 (2019) 075003 [arXiv:1901.00482] [INSPIRE].
  15. [15]
    A. Zee, A Theory of Lepton Number Violation, Neutrino Majorana Mass and Oscillation, Phys. Lett.93B (1980) 389 [Erratum ibid.B 95 (1980) 461] [INSPIRE].
  16. [16]
    E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Phys. Rev.D 73 (2006) 077301 [hep-ph/0601225] [INSPIRE].
  17. [17]
    V.D. Barger, W.-Y. Keung and S. Pakvasa, Majoron Emission by Neutrinos, Phys. Rev.D 25 (1982) 907 [INSPIRE].
  18. [18]
    A.P. Lessa and O.L.G. Peres, Revising limits on neutrino-Majoron couplings, Phys. Rev.D 75 (2007) 094001 [hep-ph/0701068] [INSPIRE].
  19. [19]
    P.S. Pasquini and O.L.G. Peres, Bounds on Neutrino-Scalar Yukawa Coupling, Phys. Rev.D 93 (2016) 053007 [Erratum ibid.D 93 (2016) 079902] [arXiv:1511.01811] [INSPIRE].
  20. [20]
    E. Lundstrom, M. Gustafsson and J. Edsjo, The Inert Doublet Model and LEP II Limits, Phys. Rev.D 79 (2009) 035013 [arXiv:0810.3924] [INSPIRE].
  21. [21]
    E.M. Dolle and S. Su, The Inert Dark Matter, Phys. Rev.D 80 (2009) 055012 [arXiv:0906.1609] [INSPIRE].
  22. [22]
    A. Pierce and J. Thaler, Natural Dark Matter from an Unnatural Higgs Boson and New Colored Particles at the TeV Scale, JHEP08 (2007) 026 [hep-ph/0703056] [INSPIRE].
  23. [23]
    ATLAS collaboration, Search for invisible Higgs boson decays in vector boson fusion at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Lett.B 793 (2019) 499 [arXiv:1809.06682] [INSPIRE].
  24. [24]
    CMS collaboration, Search for invisible decays of a Higgs boson produced through vector boson fusion in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Lett.B 793 (2019) 520 [arXiv:1809.05937] [INSPIRE].
  25. [25]
    R. Barbieri, L.J. Hall and V.S. Rychkov, Improved naturalness with a heavy Higgs: An Alternative road to LHC physics, Phys. Rev.D 74 (2006) 015007 [hep-ph/0603188] [INSPIRE].
  26. [26]
    M.S. Madhavacheril, N. Sehgal and T.R. Slatyer, Current Dark Matter Annihilation Constraints from CMB and Low-Redshift Data, Phys. Rev.D 89 (2014) 103508 [arXiv:1310.3815] [INSPIRE].
  27. [27]
    H.H. Patel, Package-X: A Mathematica package for the analytic calculation of one-loop integrals, Comput. Phys. Commun.197 (2015) 276 [arXiv:1503.01469] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Max-Planck-Institut für KernphysikHeidelbergGermany

Personalised recommendations