Advertisement

Journal of High Energy Physics

, 2019:24 | Cite as

Double Higgs boson production at NLO: combining the exact numerical result and high-energy expansion

  • Joshua Davies
  • Gudrun Heinrich
  • Stephen P. Jones
  • Matthias Kerner
  • Go Mishima
  • Matthias SteinhauserEmail author
  • David Wellmann
Open Access
Regular Article - Theoretical Physics

Abstract

We consider the next-to-leading order QCD corrections to Higgs boson pair production, using our recent calculation of the form factors in the high-energy limit. We compute the virtual corrections to the partonic cross section, applying Padé approximations to extend the range of validity of the high-energy expansion. This enables us to compare to the exact numerical calculation in a significant part of the phase space and allows us to extend the virtual matrix element grid, based on the exact numerical calculation, to larger values of the (partonic) transverse momentum of the Higgs boson, which is important for boosted Higgs studies. Improved predictions for hadron colliders with centre-of-mass energies of 14 TeV and 100 TeV are presented. The updated grid is made publicly available.

Keywords

Higgs Physics Perturbative QCD 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    CMS collaboration, Combination of searches for Higgs boson pair production in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Rev. Lett.122 (2019) 121803 [arXiv:1811.09689] [INSPIRE].
  2. [2]
    CMS collaboration, Search for Higgs boson pair production in the γγb \( \overline{b} \)final state in pp collisions at \( \sqrt{s} \) = 13 TeV, Phys. Lett.B 788 (2019) 7 [arXiv:1806.00408] [INSPIRE].
  3. [3]
    ATLAS collaboration, Combination of searches for Higgs boson pairs in pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, arXiv:1906.02025 [INSPIRE].
  4. [4]
    ATLAS collaboration, Search for Higgs boson pair production in the γγb \( \overline{b} \)final state with 13 TeV pp collision data collected by the ATLAS experiment, JHEP11 (2018) 040 [arXiv:1807.04873] [INSPIRE].
  5. [5]
    CMS collaboration, Search for nonresonant Higgs boson pair production in the b \( \overline{b} \)b \( \overline{b} \)final state at \( \sqrt{s} \) = 13 TeV, JHEP04 (2019) 112 [arXiv:1810.11854] [INSPIRE].
  6. [6]
    ATLAS collaboration, Search for pair production of Higgs bosons in the b \( \overline{b} \)b \( \overline{b} \)final state using proton-proton collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, JHEP01 (2019) 030 [arXiv:1804.06174] [INSPIRE].
  7. [7]
    D.E. Ferreira de Lima, A. Papaefstathiou and M. Spannowsky, Standard Model Higgs boson pair production in the (b \( \overline{b} \))(b \( \overline{b} \)) final state, JHEP08 (2014) 030 [arXiv:1404.7139] [INSPIRE].CrossRefGoogle Scholar
  8. [8]
    J. Davies, G. Mishima, M. Steinhauser and D. Wellmann, Double-Higgs boson production in the high-energy limit: planar master integrals, JHEP03 (2018) 048 [arXiv:1801.09696] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    J. Davies, G. Mishima, M. Steinhauser and D. Wellmann, Double Higgs boson production at NLO in the high-energy limit: complete analytic results, JHEP01 (2019) 176 [arXiv:1811.05489] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    G. Mishima, High-energy expansion of two-loop massive four-point diagrams, JHEP02 (2019) 080 [arXiv:1812.04373] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    S. Borowka et al., Higgs boson pair production in gluon fusion at next-to-leading order with full top-quark mass dependence, Phys. Rev. Lett.117 (2016) 012001 [Erratum ibid.117 (2016) 079901] [arXiv:1604.06447] [INSPIRE].
  12. [12]
    S. Borowka et al., Full top quark mass dependence in Higgs boson pair production at NLO, JHEP10 (2016) 107 [arXiv:1608.04798] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    G. Heinrich, S.P. Jones, M. Kerner, G. Luisoni and E. Vryonidou, NLO predictions for Higgs boson pair production with full top quark mass dependence matched to parton showers, JHEP08 (2017) 088 [arXiv:1703.09252] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    O.J.P. Eboli, G.C. Marques, S.F. Novaes and A.A. Natale, Twin Higgs boson production, Phys. Lett.B 197 (1987) 269 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    E.W.N. Glover and J.J. van der Bij, Higgs boson pair production via gluon fusion, Nucl. Phys.B 309 (1988) 282 [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    T. Plehn, M. Spira and P.M. Zerwas, Pair production of neutral Higgs particles in gluon-gluon collisions, Nucl. Phys.B 479 (1996) 46 [Erratum ibid.B 531 (1998) 655] [hep-ph/9603205] [INSPIRE].
  17. [17]
    J. Baglio, F. Campanario, S. Glaus, M. Mühlleitner, M. Spira and J. Streicher, Gluon fusion into Higgs pairs at NLO QCD and the top mass scheme, Eur. Phys. J.C 79 (2019) 459 [arXiv:1811.05692] [INSPIRE].
  18. [18]
    S. Dawson, S. Dittmaier and M. Spira, Neutral Higgs boson pair production at hadron colliders: QCD corrections, Phys. Rev.D 58 (1998) 115012 [hep-ph/9805244] [INSPIRE].
  19. [19]
    F. Maltoni, E. Vryonidou and M. Zaro, Top-quark mass effects in double and triple Higgs production in gluon-gluon fusion at NLO, JHEP11 (2014) 079 [arXiv:1408.6542] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    D. de Florian and J. Mazzitelli, Two-loop virtual corrections to Higgs pair production, Phys. Lett.B 724 (2013) 306 [arXiv:1305.5206] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    D. de Florian and J. Mazzitelli, Higgs boson pair production at next-to-next-to-leading order in QCD, Phys. Rev. Lett.111 (2013) 201801 [arXiv:1309.6594] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    J. Grigo, K. Melnikov and M. Steinhauser, Virtual corrections to Higgs boson pair production in the large top quark mass limit, Nucl. Phys.B 888 (2014) 17 [arXiv:1408.2422] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    D. de Florian et al., Differential Higgs boson pair production at next-to-next-to-leading order in QCD, JHEP09 (2016) 151 [arXiv:1606.09519] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    J. Grigo, J. Hoff, K. Melnikov and M. Steinhauser, On the Higgs boson pair production at the LHC, Nucl. Phys.B 875 (2013) 1 [arXiv:1305.7340] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    J. Grigo, J. Hoff and M. Steinhauser, Higgs boson pair production: top quark mass effects at NLO and NNLO, Nucl. Phys.B 900 (2015) 412 [arXiv:1508.00909] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    J. Davies, F. Herren, G. Mishima and M. Steinhauser, Real-virtual corrections to Higgs boson pair production at NNLO: three closed top quark loops, JHEP05 (2019) 157 [arXiv:1904.11998] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    D. de Florian and J. Mazzitelli, Higgs pair production at next-to-next-to-leading logarithmic accuracy at the LHC, JHEP09 (2015) 053 [arXiv:1505.07122] [INSPIRE].CrossRefGoogle Scholar
  28. [28]
    M. Grazzini et al., Higgs boson pair production at NNLO with top quark mass effects, JHEP05 (2018) 059 [arXiv:1803.02463] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    D. De Florian and J. Mazzitelli, Soft gluon resummation for Higgs boson pair production including finite Mt effects, JHEP08 (2018) 156 [arXiv:1807.03704] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    R. Gröber, A. Maier and T. Rauh, Reconstruction of top-quark mass effects in Higgs pair production and other gluon-fusion processes, JHEP03 (2018) 020 [arXiv:1709.07799] [INSPIRE].
  31. [31]
    R. Bonciani, G. Degrassi, P.P. Giardino and R. Gröber, Analytical method for next-to-leading-order QCD corrections to double-Higgs production, Phys. Rev. Lett.121 (2018) 162003 [arXiv:1806.11564] [INSPIRE].
  32. [32]
    S. Jones and S. Kuttimalai, Parton shower and NLO-matching uncertainties in Higgs boson pair production, JHEP02 (2018) 176 [arXiv:1711.03319] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    G. Heinrich, S.P. Jones, M. Kerner, G. Luisoni and L. Scyboz, Probing the trilinear Higgs boson coupling in di-Higgs production at NLO QCD including parton shower effects, JHEP06 (2019) 066 [arXiv:1903.08137] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP11 (2004) 040 [hep-ph/0409146] [INSPIRE].
  35. [35]
    S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with parton shower simulations: the POWHEG method, JHEP11 (2007) 070 [arXiv:0709.2092] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP06 (2010) 043 [arXiv:1002.2581] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    V. Hirschi and O. Mattelaer, Automated event generation for loop-induced processes, JHEP10 (2015) 146 [arXiv:1507.00020] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP02 (2009) 007 [arXiv:0811.4622] [INSPIRE].
  40. [40]
    T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun.191 (2015) 159 [arXiv:1410.3012] [INSPIRE].
  41. [41]
    J. Bellm et al., HERWIG 7.1 release note, arXiv:1705.06919 [INSPIRE].
  42. [42]
    hhgrid GitHub webpage, https://github.com/mppmu/hhgrid.
  43. [43]
    G. Degrassi, P.P. Giardino and R. Gröber, On the two-loop virtual QCD corrections to Higgs boson pair production in the Standard Model, Eur. Phys. J.C 76 (2016) 411 [arXiv:1603.00385] [INSPIRE].
  44. [44]
    S. Catani, The singular behavior of QCD amplitudes at two loop order, Phys. Lett.B 427 (1998) 161 [hep-ph/9802439] [INSPIRE].
  45. [45]
    R. Harlander and P. Kant, Higgs production and decay: analytic results at next-to-leading order QCD, JHEP12 (2005) 015 [hep-ph/0509189] [INSPIRE].
  46. [46]
    C. Anastasiou, S. Beerli, S. Bucherer, A. Daleo and Z. Kunszt, Two-loop amplitudes and master integrals for the production of a Higgs boson via a massive quark and a scalar-quark loop, JHEP01 (2007) 082 [hep-ph/0611236] [INSPIRE].
  47. [47]
    U. Aglietti, R. Bonciani, G. Degrassi and A. Vicini, Analytic results for virtual QCD corrections to Higgs production and decay, JHEP01 (2007) 021 [hep-ph/0611266] [INSPIRE].
  48. [48]
    TTP19-018 Double Higgs boson production at NLO: combining the exact numerical result and high-energy expansion, https://www.ttp.kit.edu/preprints/2019/ttp19-018/.
  49. [49]
    A.V. Smirnov, FIESTA4: optimized Feynman integral calculations with GPU support, Comput. Phys. Commun.204 (2016) 189 [arXiv:1511.03614] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    S. Borowka et al., pySecDec: a toolbox for the numerical evaluation of multi-scale integrals, Comput. Phys. Commun.222 (2018) 313 [arXiv:1703.09692] [INSPIRE].
  51. [51]
    L.A. Harland-Lang, A.D. Martin, P. Motylinski and R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs, Eur. Phys. J.C 75 (2015) 204 [arXiv:1412.3989] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    S. Dulat et al., New parton distribution functions from a global analysis of quantum chromodynamics, Phys. Rev.D 93 (2016) 033006 [arXiv:1506.07443] [INSPIRE].ADSGoogle Scholar
  53. [53]
    J. Butterworth et al., PDF4LHC recommendations for LHC run II, J. Phys.G 43 (2016) 023001 [arXiv:1510.03865] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Joshua Davies
    • 1
  • Gudrun Heinrich
    • 2
  • Stephen P. Jones
    • 3
  • Matthias Kerner
    • 4
  • Go Mishima
    • 1
    • 5
  • Matthias Steinhauser
    • 1
    Email author
  • David Wellmann
    • 1
  1. 1.Institut für Theoretische TeilchenphysikKarlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.Max Planck Institute for PhysicsMünchenGermany
  3. 3.Theoretical Physics DepartmentCERNGenevaSwitzerland
  4. 4.Physik-InstitutUniversität ZürichZürichSwitzerland
  5. 5.Institut für KernphysikKarlsruhe Institute of Technology (KIT)Eggenstein-LeopoldshafenGermany

Personalised recommendations