Advertisement

Journal of High Energy Physics

, 2019:23 | Cite as

Semiclassical correlators in Jackiw-Teitelboim gravity

  • Ksenia BulychevaEmail author
Open Access
Regular Article - Theoretical Physics
  • 24 Downloads

Abstract

In the semiclassical approximation to JT gravity, we find two-point and four- point correlators of heavy operators. To do so, we introduce a massive particle in the bulk and compute its action with gravitational backreaction. In Euclidean signature, the two- point function has a finite limit at large distances. In real time, we find that the thermal two-point function approaches an exponentially small value exp(−N) at long time. We also find that after a period of exponential decay, the out of time ordered four-point function approaches an exponentially small value as well.

Keywords

2D Gravity AdS-CFT Correspondence Nonperturbative Effects Conformal Field Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev.D 94 (2016) 106002 [arXiv:1604.07818] [INSPIRE].ADSMathSciNetGoogle Scholar
  2. [2]
    A. Kitaev, A simple model of quantum holography, talks given at KITP, April 7 and May 27 (2015).Google Scholar
  3. [3]
    J. Engelsöy, T.G. Mertens and H. Verlinde, An investigation of AdS 2backreaction and holography, JHEP07 (2016) 139 [arXiv:1606.03438] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    T.G. Mertens, G.J. Turiaci and H.L. Verlinde, Solving the Schwarzian via the conformal bootstrap, JHEP08 (2017) 136 [arXiv:1705.08408] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    A. Jevicki, K. Suzuki and J. Yoon, Bi-local holography in the SYK model, JHEP07 (2016) 007 [arXiv:1603.06246] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    W. Fu, D. Gaiotto, J. Maldacena and S. Sachdev, Supersymmetric Sachdev-Ye-Kitaev models, Phys. Rev.D 95 (2017) 026009 [arXiv:1610.08917] [INSPIRE].ADSMathSciNetGoogle Scholar
  7. [7]
    J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two dimensional nearly Anti-de-Sitter space, PTEP2016 (2016) 12C104 [arXiv:1606.01857] [INSPIRE].
  8. [8]
    Z. Yang, The quantum gravity dynamics of near extremal black holes, JHEP05 (2019) 205 [arXiv:1809.08647] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    P. Saad, S.H. Shenker and D. Stanford, JT gravity as a matrix integral, arXiv:1903.11115 [INSPIRE].
  10. [10]
    A. Blommaert, T.G. Mertens and H. Verschelde, Clocks and rods in Jackiw-Teitelboim quantum gravity, JHEP09 (2019) 060 [arXiv:1902.11194] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    D. Stanford and E. Witten, JT gravity and the ensembles of random matrix theory, arXiv:1907.03363 [INSPIRE].
  12. [12]
    L.V. Iliesiu, S.S. Pufu, H. Verlinde and Y. Wang, An exact quantization of Jackiw-Teitelboim gravity, arXiv:1905.02726 [INSPIRE].
  13. [13]
    J.M. Maldacena, Eternal black holes in Anti-de Sitter, JHEP04 (2003) 021 [hep-th/0106112] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    J.S. Cotler et al., Black holes and random matrices, JHEP05 (2017) 118 [Erratum ibid. 09 (2018) 002] [arXiv:1611.04650] [INSPIRE].
  15. [15]
    P. Saad, S.H. Shenker and D. Stanford, A semiclassical ramp in SYK and in gravity, arXiv:1806.06840 [INSPIRE].
  16. [16]
    J.L.F. Barbon and E. Rabinovici, Very long time scales and black hole thermal equilibrium, JHEP11 (2003) 047 [hep-th/0308063] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, JHEP08 (2016) 106 [arXiv:1503.01409] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    Y. Gu, A. Lucas and X.-L. Qi, Spread of entanglement in a Sachdev-Ye-Kitaev chain, JHEP09 (2017) 120 [arXiv:1708.00871] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    I. Kourkoulou and J. Maldacena, Pure states in the SYK model and nearly-AdS 2gravity, arXiv:1707.02325 [INSPIRE].
  20. [20]
    A. Goel, H.T. Lam, G.J. Turiaci and H. Verlinde, Expanding the black hole interior: partially entangled thermal states in SYK, JHEP02 (2019) 156 [arXiv:1807.03916] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    M. Bañados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time, Phys. Rev. Lett.69 (1992) 1849 [hep-th/9204099] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    S. Ferrara, R. Kallosh and A. Strominger, N = 2 extremal black holes, Phys. Rev.D 52 (1995) R5412 [hep-th/9508072] [INSPIRE].ADSMathSciNetGoogle Scholar
  23. [23]
    A. Almheiri and J. Polchinski, Models of AdS 2backreaction and holography, JHEP11 (2015) 014 [arXiv:1402.6334] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    R. Jackiw, Lower dimensional gravity, Nucl. Phys.B 252 (1985) 343 [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    C. Teitelboim, Gravitation and Hamiltonian structure in two space-time dimensions, Phys. Lett.126B (1983) 41.ADSCrossRefGoogle Scholar
  26. [26]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys.2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  27. [27]
    D.J. Gross and V. Rosenhaus, A line of CFTs: from generalized free fields to SYK, JHEP07 (2017) 086 [arXiv:1706.07015] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    G. Sárosi, AdS 2holography and the SYK model, PoS Modave2017 (2018) 001 [arXiv:1711.08482] [INSPIRE].
  29. [29]
    L. Dyson, M. Kleban and L. Susskind, Disturbing implications of a cosmological constant, JHEP10 (2002) 011 [hep-th/0208013] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    J.M. Deutsch, Quantum statistical mechanics in a closed system, Phys. Rev. A 43 (1991) 2046.ADSCrossRefGoogle Scholar
  31. [31]
    M. Srednicki, Chaos and quantum thermalization, Phys. Rev.E 50 (1994) 888.ADSGoogle Scholar
  32. [32]
    A. Larkin and Y.N. Ovchinnikov, Quasiclassical method in the theory of superconductivity, Sov. Phys. JETP28 (1969) 1200.ADSGoogle Scholar
  33. [33]
    J. Polchinski, Chaos in the black hole S-matrix, arXiv:1505.08108 [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of PhysicsPrinceton UniversityPrincetonU.S.A.

Personalised recommendations