Advertisement

Journal of High Energy Physics

, 2019:17 | Cite as

Systematics of consistent truncations from generalised geometry

  • Davide CassaniEmail author
  • Grégoire Josse
  • Michela Petrini
  • Daniel Waldram
Open Access
Regular Article - Theoretical Physics
  • 21 Downloads

Abstract

We present a generalised geometry framework for systematically constructing consistent truncations of ten- and eleven-dimensional supergravity preserving varying fractions of supersymmetry. Truncations arise when there is a reduced structure group GS of the exceptional generalised geometry, such that the intrinsic torsion is a GS -singlet. The matter content of the truncated theory follows from group-theoretical arguments, while the gauging is determined by the sub-algebra of generalised diffeomorphisms generated by the GS -singlet vectors. After discussing the general ideas across different spacetime dimensions and amounts of supersymmetry, we provide detailed formulae for truncations to gauged half-maximal supergravity in five dimensions. In particular, we establish an expression for the generalised metric on the exceptional tangent bundle, which determines the scalar truncation ansatz. As applications, we show that this formalism gives a simple derivation of a new consistent truncation of type IIB supergravity on β-deformed Lunin-Maldacena geometries, yielding half-maximal supergravity coupled to two vector multiplets, and of the truncation of eleven-dimensional supergravity on Maldacena-Núñez geometries, given by S4 twisted over a Riemann surface, which leads to half-maximal supergravity coupled to three vector multiplets.

Keywords

Flux compactifications Supergravity Models AdS-CFT Correspondence 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    J. Scherk and J.H. Schwarz, How to Get Masses from Extra Dimensions, Nucl. Phys.B 153 (1979) 61 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    M.J. Duff, B.E.W. Nilsson, C.N. Pope and N.P. Warner, On the Consistency of the Kaluza-Klein Ansatz, Phys. Lett.149B (1984) 90 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    M. Cvetič, H. Lü and C.N. Pope, Consistent Kaluza-Klein sphere reductions, Phys. Rev.D 62 (2000) 064028 [hep-th/0003286] [INSPIRE].
  4. [4]
    B. de Wit and H. Nicolai, The Consistency of the S 7Truncation in D = 11 Supergravity, Nucl. Phys.B 281 (1987) 211 [INSPIRE].
  5. [5]
    H. Nastase, D. Vaman and P. van Nieuwenhuizen, Consistency of the AdS 7× S 4reduction and the origin of selfduality in odd dimensions, Nucl. Phys.B 581 (2000) 179 [hep-th/9911238] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  6. [6]
    K. Lee, C. Strickland-Constable and D. Waldram, Spheres, generalised parallelisability and consistent truncations, Fortsch. Phys.65 (2017) 1700048 [arXiv:1401.3360] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  7. [7]
    W.H. Baron, Gaugings from E7(7)extended geometries, Phys. Rev.D 91 (2015) 024008 [arXiv:1404.7750] [INSPIRE].
  8. [8]
    O. Hohm and H. Samtleben, Consistent Kaluza-Klein Truncations via Exceptional Field Theory, JHEP01 (2015) 131 [arXiv:1410.8145] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    W.H. Baron and G. Dall’Agata, Uplifting non-compact gauged supergravities, JHEP02 (2015) 003 [arXiv:1410.8823] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    A. Baguet, O. Hohm and H. Samtleben, Consistent Type IIB Reductions to Maximal 5D Supergravity, Phys. Rev.D 92 (2015) 065004 [arXiv:1506.01385] [INSPIRE].
  11. [11]
    G. Inverso, Generalised Scherk-Schwarz reductions from gauged supergravity, JHEP12 (2017) 124 [arXiv:1708.02589] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    F. Ciceri, B. de Wit and O. Varela, IIB supergravity and the E6(6)covariant vector-tensor hierarchy, JHEP04 (2015) 094 [arXiv:1412.8297] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  13. [13]
    E. Malek, 7-dimensional \( \mathcal{N} \) = 2 Consistent Truncations using SL(5) Exceptional Field Theory, JHEP06 (2017) 026 [arXiv:1612.01692] [INSPIRE].
  14. [14]
    F. Ciceri, G. Dibitetto, J.J. Fernandez-Melgarejo, A. Guarino and G. Inverso, Double Field Theory at SL(2) angles, JHEP05 (2017) 028 [arXiv:1612.05230] [INSPIRE].
  15. [15]
    E. Malek, Half-Maximal Supersymmetry from Exceptional Field Theory, Fortsch. Phys.65 (2017) 1700061 [arXiv:1707.00714] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  16. [16]
    E. Malek, H. Samtleben and V. Vall Camell, Supersymmetric AdS 7and AdS 6vacua and their minimal consistent truncations from exceptional field theory, Phys. Lett.B 786 (2018) 171 [arXiv:1808.05597] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  17. [17]
    E. Malek, H. Samtleben and V. Vall Camell, Supersymmetric AdS 7and AdS 6vacua and their consistent truncations with vector multiplets, JHEP04 (2019) 088 [arXiv:1901.11039] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  18. [18]
    A. Coimbra, C. Strickland-Constable and D. Waldram, Supersymmetric Backgrounds and Generalised Special Holonomy, Class. Quant. Grav.33 (2016) 125026 [arXiv:1411.5721] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  19. [19]
    J.P. Gauntlett and O. Varela, Consistent Kaluza-Klein reductions for general supersymmetric AdS solutions, Phys. Rev.D 76 (2007) 126007 [arXiv:0707.2315] [INSPIRE].
  20. [20]
    D. Cassani, G. Dall’Agata and A.F. Faedo, Type IIB supergravity on squashed Sasaki-Einstein manifolds, JHEP05 (2010) 094 [arXiv:1003.4283] [INSPIRE].
  21. [21]
    J.P. Gauntlett and O. Varela, Universal Kaluza-Klein reductions of type IIB to \( \mathcal{N} \) = 4 supergravity in five dimensions, JHEP06 (2010) 081 [arXiv:1003.5642] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  22. [22]
    O. Lunin and J.M. Maldacena, Deforming field theories with U(1) × U(1) global symmetry and their gravity duals, JHEP05 (2005) 033 [hep-th/0502086] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    J.T. Liu and B. McPeak, Gauged Supergravity from the Lunin-Maldacena background, arXiv:1905.06861 [INSPIRE].
  24. [24]
    J.M. Maldacena and C. Núñez, Supergravity description of field theories on curved manifolds and a no go theorem, Int. J. Mod. Phys.A 16 (2001) 822 [hep-th/0007018] [INSPIRE].
  25. [25]
    K.C.M. Cheung, J.P. Gauntlett and C. Rosen, Consistent KK truncations for M5-branes wrapped on Riemann surfaces, Class. Quant. Grav.36 (2019) 225003 [arXiv:1906.08900] [INSPIRE].CrossRefGoogle Scholar
  26. [26]
    J.P. Gauntlett, S. Kim, O. Varela and D. Waldram, Consistent supersymmetric Kaluza-Klein truncations with massive modes, JHEP04 (2009) 102 [arXiv:0901.0676] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    A.-K. Kashani-Poor, Nearly Kähler Reduction, JHEP11 (2007) 026 [arXiv:0709.4482] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  28. [28]
    D. Cassani and A.-K. Kashani-Poor, Exploiting \( \mathcal{N} \) = 2 in consistent coset reductions of type IIA, Nucl. Phys.B 817 (2009) 25 [arXiv:0901.4251] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  29. [29]
    D. Cassani and P. Koerber, Tri-Sasakian consistent reduction, JHEP01 (2012) 086 [arXiv:1110.5327] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  30. [30]
    D. Cassani, P. Koerber and O. Varela, All homogeneous \( \mathcal{N} \) = 2 M-theory truncations with supersymmetric AdS4 vacua, JHEP11 (2012) 173 [arXiv:1208.1262] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  31. [31]
    P. Koerber, D. Lüst and D. Tsimpis, Type IIA AdS 4compactifications on cosets, interpolations and domain walls, JHEP07 (2008) 017 [arXiv:0804.0614] [INSPIRE].
  32. [32]
    S. Salamon, Riemannian Geometry and Holonomy Groups, Pitman Research Notes in Mathematics, Longman Science & Technology, Harlow (1989).Google Scholar
  33. [33]
    C.M. Hull, Generalised Geometry for M-theory, JHEP07 (2007) 079 [hep-th/0701203] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    P. Pires Pacheco and D. Waldram, M-theory, exceptional generalised geometry and superpotentials, JHEP09 (2008) 123 [arXiv:0804.1362] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  35. [35]
    A. Coimbra, C. Strickland-Constable and D. Waldram, Ed(d)× ℝ +generalised geometry, connections and M-theory, JHEP02 (2014) 054 [arXiv:1112.3989] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  36. [36]
    A. Coimbra, C. Strickland-Constable and D. Waldram, Supergravity as Generalised Geometry II: Ed(d)× ℝ +and M-theory, JHEP03 (2014) 019 [arXiv:1212.1586] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  37. [37]
    O. Hohm and H. Samtleben, Exceptional Form of D = 11 Supergravity, Phys. Rev. Lett.111 (2013) 231601 [arXiv:1308.1673] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    O. Hohm and H. Samtleben, Exceptional Field Theory I: E6(6)covariant Form of M-theory and Type IIB, Phys. Rev.D 89 (2014) 066016 [arXiv:1312.0614] [INSPIRE].
  39. [39]
    O. Hohm and H. Samtleben, Exceptional field theory. II. E7(7) , Phys. Rev.D 89 (2014) 066017 [arXiv:1312.4542] [INSPIRE].
  40. [40]
    A. Abzalov, I. Bakhmatov and E.T. Musaev, Exceptional field theory: SO(5, 5), JHEP06 (2015) 088 [arXiv:1504.01523] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  41. [41]
    E.T. Musaev, Exceptional field theory: SL(5), JHEP02 (2016) 012 [arXiv:1512.02163] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  42. [42]
    B. de Wit, H. Nicolai and H. Samtleben, Gauged Supergravities, Tensor Hierarchies and M-theory, JHEP02 (2008) 044 [arXiv:0801.1294] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  43. [43]
    B. de Wit and H. Samtleben, Gauged maximal supergravities and hierarchies of nonAbelian vector-tensor systems, Fortsch. Phys.53 (2005) 442 [hep-th/0501243] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  44. [44]
    H. Samtleben, Lectures on Gauged Supergravity and Flux Compactifications, Class. Quant. Grav.25 (2008) 214002 [arXiv:0808.4076] [INSPIRE].
  45. [45]
    M. Trigiante, Gauged Supergravities, Phys. Rept.680 (2017) 1 [arXiv:1609.09745] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  46. [46]
    Y. Tanii, Introduction to supergravities in diverse dimensions, in YITP Workshop on Supersymmetry, Kyoto, Japan, 27–30 March 1996 (1998) [hep-th/9802138] [INSPIRE].
  47. [47]
    M.J. Duff and C.N. Pope, Consistent truncations in Kaluza-Klein theories, Nucl. Phys.B 255 (1985) 355 [INSPIRE].
  48. [48]
    C.N. Pope and K.S. Stelle, Zilch Currents, Supersymmetry and Kaluza-Klein Consistency, Phys. Lett.B 198 (1987) 151 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    A. Coimbra and C. Strickland-Constable, Supersymmetric Backgrounds, the Killing Superalgebra and Generalised Special Holonomy, JHEP11 (2016) 063 [arXiv:1606.09304] [INSPIRE].
  50. [50]
    A. Coimbra and C. Strickland-Constable, Supersymmetric AdS backgrounds and weak generalised holonomy, arXiv:1710.04156 [INSPIRE].
  51. [51]
    D. Cassani and A.F. Faedo, A Supersymmetric consistent truncation for conifold solutions, Nucl. Phys.B 843 (2011) 455 [arXiv:1008.0883] [INSPIRE].
  52. [52]
    I. Bena, G. Giecold, M. Graña, N. Halmagyi and F. Orsi, Supersymmetric Consistent Truncations of IIB on T 1,1 , JHEP04 (2011) 021 [arXiv:1008.0983] [INSPIRE].
  53. [53]
    J. Schon and M. Weidner, Gauged \( \mathcal{N} \) = 4 supergravities, JHEP05 (2006) 034 [hep-th/0602024] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    G. Dall’Agata, C. Herrmann and M. Zagermann, General matter coupled N = 4 gauged supergravity in five-dimensions, Nucl. Phys.B 612 (2001) 123 [hep-th/0103106] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  55. [55]
    A. Ashmore and D. Waldram, Exceptional Calabi-Yau spaces: the geometry of \( \mathcal{N} \) = 2 backgrounds with flux, Fortsch. Phys.65 (2017) 1600109 [arXiv:1510.00022] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  56. [56]
    D. Cassani, O. de Felice, M. Petrini, C. Strickland-Constable and D. Waldram, Exceptional generalised geometry for massive IIA and consistent reductions, JHEP08 (2016) 074 [arXiv:1605.00563] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  57. [57]
    A. Baguet, O. Hohm and H. Samtleben, E6(6)Exceptional Field Theory: Review and Embedding of Type IIB, PoS(CORFU2014)133 (2015) [arXiv:1506.01065] [INSPIRE].
  58. [58]
    J.T. Liu, P. Szepietowski and Z. Zhao, Consistent massive truncations of IIB supergravity on Sasaki-Einstein manifolds, Phys. Rev.D 81 (2010) 124028 [arXiv:1003.5374] [INSPIRE].ADSGoogle Scholar
  59. [59]
    K. Skenderis, M. Taylor and D. Tsimpis, A Consistent truncation of IIB supergravity on manifolds admitting a Sasaki-Einstein structure, JHEP06 (2010) 025 [arXiv:1003.5657] [INSPIRE].
  60. [60]
    A. Khavaev, K. Pilch and N.P. Warner, New vacua of gauged \( \mathcal{N} \) = 8 supergravity in five-dimensions, Phys. Lett.B 487 (2000) 14 [hep-th/9812035] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  61. [61]
    D.Z. Freedman, S.S. Gubser, K. Pilch and N.P. Warner, Renormalization group flows from holography supersymmetry and a c theorem, Adv. Theor. Math. Phys.3 (1999) 363 [hep-th/9904017] [INSPIRE].
  62. [62]
    A. Ashmore, Marginal deformations of 3d \( \mathcal{N} \) = 2 CFTs from AdS 4backgrounds in generalised geometry, JHEP12 (2018) 060 [arXiv:1809.03503] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  63. [63]
    H. Lin, O. Lunin and J.M. Maldacena, Bubbling AdS space and 1/2 BPS geometries, JHEP10 (2004) 025 [hep-th/0409174] [INSPIRE].
  64. [64]
    J.P. Gauntlett and O. Varela, D = 5 SU(2) × U(1) Gauged Supergravity from D = 11 Supergravity, JHEP02 (2008) 083 [arXiv:0712.3560] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  65. [65]
    D. Andriot, R. Minasian and M. Petrini, Flux backgrounds from Twists, JHEP12 (2009) 028 [arXiv:0903.0633] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  66. [66]
    J. Louis, H. Triendl and M. Zagermann, \( \mathcal{N} \) = 4 supersymmetric AdS 5vacua and their moduli spaces, JHEP10 (2015) 083 [arXiv:1507.01623] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  67. [67]
    N. Bobev, D. Cassani and H. Triendl, Holographic RG Flows for Four-dimensional \( \mathcal{N} \) = 2 SCFTs, JHEP06 (2018) 086 [arXiv:1804.03276] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  68. [68]
    L.J. Romans, Gauged N = 4 Supergravities in Five-dimensions and Their Magnetovac Backgrounds, Nucl. Phys.B 267 (1986) 433 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  69. [69]
    J.P. Gauntlett, D. Martelli, J. Sparks and D. Waldram, Sasaki-Einstein metrics on S 2× S 3 , Adv. Theor. Math. Phys.8 (2004) 711 [hep-th/0403002] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
  70. [70]
    J.T. Liu and P. Szepietowski, Supersymmetry of consistent massive truncations of IIB supergravity, Phys. Rev.D 85 (2012) 126010 [arXiv:1103.0029] [INSPIRE].ADSGoogle Scholar
  71. [71]
    D. Gaiotto and J. Maldacena, The Gravity duals of N = 2 superconformal field theories, JHEP10 (2012) 189 [arXiv:0904.4466] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  72. [72]
    O. Hohm and H. Samtleben, Exceptional field theory. III. E8(8) , Phys. Rev.D 90 (2014) 066002 [arXiv:1406.3348] [INSPIRE].
  73. [73]
    A. Baguet and H. Samtleben, E8(8)Exceptional Field Theory: Geometry, Fermions and Supersymmetry, JHEP09 (2016) 168 [arXiv:1607.03119] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  74. [74]
    I. Bah, C. Beem, N. Bobev and B. Wecht, Four-Dimensional SCFTs from M5-Branes, JHEP06 (2012) 005 [arXiv:1203.0303] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  75. [75]
    F. Ciceri, A. Guarino and G. Inverso, The exceptional story of massive IIA supergravity, JHEP08 (2016) 154 [arXiv:1604.08602] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  76. [76]
    A. Ashmore, M. Gabella, M. Graña, M. Petrini and D. Waldram, Exactly marginal deformations from exceptional generalised geometry, JHEP01 (2017) 124 [arXiv:1605.05730] [INSPIRE].
  77. [77]
    E. Gerchkovitz, J. Gomis and Z. Komargodski, Sphere Partition Functions and the Zamolodchikov Metric, JHEP11 (2014) 001 [arXiv:1405.7271] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.INFN, Sezione di PadovaPadovaItaly
  2. 2.Sorbonne UniversitéParisFrance
  3. 3.Department of PhysicsImperial College LondonLondonU.K.

Personalised recommendations