Advertisement

Journal of High Energy Physics

, 2019:15 | Cite as

SUSY breaking in monopole quivers

  • Antonio AmaritiEmail author
Open Access
Regular Article - Theoretical Physics
  • 120 Downloads

Abstract

We study 3d monopole quivers, theories with product gauge groups interacting through monopole superpotentials and we observe that they are a natural setup for the study of the spontaneous breaking of 3d \( \mathcal{N} \) = 2 supersymmetry. We give evidence of this statement by studying various examples of increasing complexity, considering quivers that are mirror dual to Wess-Zumino models. These Wess-Zumino models, in opportune regimes of parameters, break supersymmetry in perturbatively controllable (meta)stable vacua.

Keywords

Supersymmetry Breaking Solitons Monopoles and Instantons Supersymmetry and Duality 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    S. Giombi, S. Minwalla, S. Prakash, S.P. Trivedi, S.R. Wadia and X. Yin, Chern-Simons Theory with Vector Fermion Matter, Eur. Phys. J.C 72 (2012) 2112 [arXiv:1110.4386] [INSPIRE].
  2. [2]
    O. Aharony, G. Gur-Ari and R. Yacoby, d = 3 Bosonic Vector Models Coupled to Chern-Simons Gauge Theories, JHEP03 (2012) 037 [arXiv:1110.4382] [INSPIRE].
  3. [3]
    O. Aharony, G. Gur-Ari and R. Yacoby, Correlation Functions of Large N Chern-Simons-Matter Theories and Bosonization in Three Dimensions, JHEP12 (2012) 028 [arXiv:1207.4593] [INSPIRE].
  4. [4]
    O. Aharony, Baryons, monopoles and dualities in Chern-Simons-matter theories, JHEP02 (2016) 093 [arXiv:1512.00161] [INSPIRE].
  5. [5]
    N. Seiberg, T. Senthil, C. Wang and E. Witten, A Duality Web in 2 + 1 Dimensions and Condensed Matter Physics, Annals Phys.374 (2016) 395 [arXiv:1606.01989] [INSPIRE].
  6. [6]
    S. Jain, S. Minwalla and S. Yokoyama, Chern Simons duality with a fundamental boson and fermion, JHEP11 (2013) 037 [arXiv:1305.7235] [INSPIRE].
  7. [7]
    G. Gur-Ari and R. Yacoby, Three Dimensional Bosonization From Supersymmetry, JHEP11 (2015) 013 [arXiv:1507.04378] [INSPIRE].
  8. [8]
    S. Kachru, M. Mulligan, G. Torroba and H. Wang, Bosonization and Mirror Symmetry, Phys. Rev.D 94 (2016) 085009 [arXiv:1608.05077] [INSPIRE].
  9. [9]
    S. Kachru, M. Mulligan, G. Torroba and H. Wang, Nonsupersymmetric dualities from mirror symmetry, Phys. Rev. Lett.118 (2017) 011602 [arXiv:1609.02149] [INSPIRE].
  10. [10]
    O. Aharony, S. Jain and S. Minwalla, Flows, Fixed Points and Duality in Chern-Simons-matter theories, JHEP12 (2018) 058 [arXiv:1808.03317] [INSPIRE].
  11. [11]
    E. Witten, Supersymmetric index of three-dimensional gauge theory, in The many faces of the superworld , M.A. Shifman ed., World Scientific (2000), pp. 156–184 [hep-th/9903005] [INSPIRE].
  12. [12]
    O. Bergman, A. Hanany, A. Karch and B. Kol, Branes and supersymmetry breaking in three-dimensional gauge theories, JHEP10 (1999) 036 [hep-th/9908075] [INSPIRE].CrossRefGoogle Scholar
  13. [13]
    K. Ohta, Supersymmetric index and s rule for type IIB branes, JHEP10 (1999) 006 [hep-th/9908120] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    J. de Boer, K. Hori and Y. Oz, Dynamics of N = 2 supersymmetric gauge theories in three-dimensions, Nucl. Phys.B 500 (1997) 163 [hep-th/9703100] [INSPIRE].
  15. [15]
    A. Giveon, D. Kutasov and O. Lunin, Spontaneous SUSY Breaking in Various Dimensions, Nucl. Phys.B 822 (2009) 127 [arXiv:0904.2175] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    K.A. Intriligator, N. Seiberg and D. Shih, Dynamical SUSY breaking in meta-stable vacua, JHEP04 (2006) 021 [hep-th/0602239] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    A. Amariti and M. Siani, R-symmetry and supersymmetry breaking in 3D WZ models, JHEP08 (2009) 055 [arXiv:0905.4725] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    A. Amariti, D. Orlando and S. Reffert, Monopole Quivers and new 3D N = 2 dualities, Nucl. Phys.B 924 (2017) 153 [arXiv:1705.09297] [INSPIRE].
  19. [19]
    F. Benini, S. Benvenuti and S. Pasquetti, SUSY monopole potentials in 2 + 1 dimensions, JHEP08 (2017) 086 [arXiv:1703.08460] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    A. Amariti, I. Garozzo and N. Mekareeya, New 3d \( \mathcal{N} \) = 2 dualities from quadratic monopoles, JHEP11 (2018) 135 [arXiv:1806.01356] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    O. Aharony, A. Hanany, K.A. Intriligator, N. Seiberg and M.J. Strassler, Aspects of N = 2 supersymmetric gauge theories in three-dimensions, Nucl. Phys.B 499 (1997) 67 [hep-th/9703110] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    S.R. Coleman and E.J. Weinberg, Radiative Corrections as the Origin of Spontaneous Symmetry Breaking, Phys. Rev.D 7 (1973) 1888 [INSPIRE].
  23. [23]
    A.E. Nelson and N. Seiberg, R symmetry breaking versus supersymmetry breaking, Nucl. Phys.B 416 (1994) 46 [hep-ph/9309299] [INSPIRE].
  24. [24]
    D. Shih, Spontaneous R-symmetry breaking in O’Raifeartaigh models, JHEP02 (2008) 091 [hep-th/0703196] [INSPIRE].
  25. [25]
    Z. Komargodski and D. Shih, Notes on SUSY and R-Symmetry Breaking in Wess-Zumino Models, JHEP04 (2009) 093 [arXiv:0902.0030] [INSPIRE].
  26. [26]
    O. Aharony, S.S. Razamat, N. Seiberg and B. Willett, 3d dualities from 4d dualities, JHEP07 (2013) 149 [arXiv:1305.3924] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    N. Dorey and D. Tong, Mirror symmetry and toric geometry in three-dimensional gauge theories, JHEP05 (2000) 018 [hep-th/9911094] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    D. Tong, Dynamics of N = 2 supersymmetric Chern-Simons theories, JHEP07 (2000) 019 [hep-th/0005186] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    O. Aharony, IR duality in d = 3 N = 2 supersymmetric USp(2N (c)) and U(N (c)) gauge theories, Phys. Lett.B 404 (1997) 71 [hep-th/9703215] [INSPIRE].
  30. [30]
    A. Giveon and D. Kutasov, Seiberg Duality in Chern-Simons Theory, Nucl. Phys.B 812 (2009) 1 [arXiv:0808.0360] [INSPIRE].
  31. [31]
    F. Benini, C. Closset and S. Cremonesi, Comments on 3d Seiberg-like dualities, JHEP10 (2011) 075 [arXiv:1108.5373] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    A. Amariti, D. Forcella, C. Klare, D. Orlando and S. Reffert, The braneology of 3D dualities, J. Phys.A 48 (2015) 265401 [arXiv:1501.06571] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    A. Amariti, D. Forcella, C. Klare, D. Orlando and S. Reffert, 4D/3D reduction of dualities: mirrors on the circle, JHEP10 (2015) 048 [arXiv:1504.02783] [INSPIRE].
  34. [34]
    A. Collinucci, S. Giacomelli, R. Savelli and R. Valandro, T-branes through 3d mirror symmetry, JHEP07 (2016) 093 [arXiv:1603.00062] [INSPIRE].
  35. [35]
    A. Giveon, D. Kutasov, J. McOrist and A.B. Royston, D-Term Supersymmetry Breaking from Branes, Nucl. Phys.B 822 (2009) 106 [arXiv:0904.0459] [INSPIRE].
  36. [36]
    S. Giacomelli and N. Mekareeya, Mirror theories of 3d \( \mathcal{N} \) = 2 SQCD, JHEP03 (2018) 126 [arXiv:1711.11525] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    S. Franco and A.M. Uranga, Dynamical SUSY breaking at meta-stable minima from D-branes at obstructed geometries, JHEP06 (2006) 031 [hep-th/0604136] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    M.J. Duncan and L.G. Jensen, Exact tunneling solutions in scalar field theory, Phys. Lett.B 291 (1992) 109 [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.INFN, Sezione di MilanoMilanoItaly

Personalised recommendations