Advertisement

Journal of High Energy Physics

, 2019:13 | Cite as

Direct detections of Majorana dark matter in vector portal

  • Wei ChaoEmail author
Open Access
Regular Article - Theoretical Physics
  • 13 Downloads

Abstract

In this paper we investigate the direct detections of Majorana dark matter (MDM) in vector portal. Considering that the tree-level scattering cross sections in these models are either dark matter velocity suppressed or spin-dependent, we calculate radiative corrections to the spin-independent cross section in effective field theory approach. Wilson coefficients of effective MDM-quark interactions are calculated at the one-loop level, and the Wilson coefficient of the effective MDM-gluon interaction is derived at the two-loop level. Numerical results show that current constraints can rule out a narrow mass range of MDM when tree-level contributions are considered, and the spin-independent cross section from radiative corrections is a few orders of magnitude smaller than the tree-level contributions.

Keywords

Beyond Standard Model Cosmology of Theories beyond the SM 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    Planck collaboration, Planck 2018 results. VI. Cosmological parameters, arXiv:1807.06209 [INSPIRE].
  2. [2]
    H. Goldberg, Constraint on the Photino Mass from Cosmology, Phys. Rev. Lett.50 (1983) 1419 [Erratum ibid.103 (2009) 099905] [INSPIRE].
  3. [3]
    J.R. Ellis, J.S. Hagelin, D.V. Nanopoulos, K.A. Olive and M. Srednicki, Supersymmetric Relics from the Big Bang, Nucl. Phys.B 238 (1984) 453 [INSPIRE].
  4. [4]
    G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept.267 (1996) 195 [hep-ph/9506380] [INSPIRE].
  5. [5]
    G. Servant and T.M.P. Tait, Is the lightest Kaluza-Klein particle a viable dark matter candidate?, Nucl. Phys.B 650 (2003) 391 [hep-ph/0206071] [INSPIRE].
  6. [6]
    H.-C. Cheng, J.L. Feng and K.T. Matchev, Kaluza-Klein dark matter, Phys. Rev. Lett.89 (2002) 211301 [hep-ph/0207125] [INSPIRE].
  7. [7]
    G. Bertone, D. Hooper and J. Silk, Particle dark matter: Evidence, candidates and constraints, Phys. Rept.405 (2005) 279 [hep-ph/0404175] [INSPIRE].
  8. [8]
    LUX collaboration, First results from the LUX dark matter experiment at the Sanford Underground Research Facility, Phys. Rev. Lett.112 (2014) 091303 [arXiv:1310.8214] [INSPIRE].
  9. [9]
    PandaX-II collaboration, Dark Matter Results from First 98.7 Days of Data from the PandaX-II Experiment, Phys. Rev. Lett.117 (2016) 121303 [arXiv:1607.07400] [INSPIRE].
  10. [10]
    XENON collaboration, First Dark Matter Search Results from the XENON1T Experiment, Phys. Rev. Lett.119 (2017) 181301 [arXiv:1705.06655] [INSPIRE].
  11. [11]
    J. Billard, L. Strigari and E. Figueroa-Feliciano, Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments, Phys. Rev.D 89 (2014) 023524 [arXiv:1307.5458] [INSPIRE].
  12. [12]
    W. Chao, J.-G. Jiang, X. Wang and X.-Y. Zhang, Direct Detections of Dark Matter in the Presence of Non-standard Neutrino Interactions, JCAP08 (2019) 010 [arXiv:1904.11214] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    E. Dudas, Y. Mambrini, S. Pokorski and A. Romagnoni, (In)visible Z-prime and dark matter, JHEP08 (2009) 014 [arXiv:0904.1745] [INSPIRE].
  14. [14]
    H. An, X. Ji and L.-T. Wang, Light Dark Matter and Z Dark Force at Colliders, JHEP07 (2012) 182 [arXiv:1202.2894] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    M.T. Frandsen, F. Kahlhoefer, A. Preston, S. Sarkar and K. Schmidt-Hoberg, LHC and Tevatron Bounds on the Dark Matter Direct Detection Cross-Section for Vector Mediators, JHEP07 (2012) 123 [arXiv:1204.3839] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    H. Dreiner, D. Schmeier and J. Tattersall, Contact Interactions Probe Effective Dark Matter Models at the LHC, EPL102 (2013) 51001 [arXiv:1303.3348] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    A. Alves, S. Profumo and F.S. Queiroz, The dark Z portal: direct, indirect and collider searches, JHEP04 (2014) 063 [arXiv:1312.5281] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    G. Arcadi, Y. Mambrini, M.H.G. Tytgat and B. Zaldivar, Invisible Z and dark matter: LHC vs LUX constraints, JHEP03 (2014) 134 [arXiv:1401.0221] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    O. Lebedev and Y. Mambrini, Axial dark matter: The case for an invisible Z , Phys. Lett.B 734 (2014) 350 [arXiv:1403.4837] [INSPIRE].
  20. [20]
    N.F. Bell, Y. Cai, R.K. Leane and A.D. Medina, Leptophilic dark matter with Z interactions, Phys. Rev.D 90 (2014) 035027 [arXiv:1407.3001] [INSPIRE].
  21. [21]
    A. Alves, A. Berlin, S. Profumo and F.S. Queiroz, Dark Matter Complementarity and the Z Portal, Phys. Rev.D 92 (2015) 083004 [arXiv:1501.03490] [INSPIRE].
  22. [22]
    A. De Simone and T. Jacques, Simplified models vs. effective field theory approaches in dark matter searches, Eur. Phys. J.C 76 (2016) 367 [arXiv:1603.08002] [INSPIRE].
  23. [23]
    M. Fairbairn, J. Heal, F. Kahlhoefer and P. Tunney, Constraints on Z models from LHC dijet searches and implications for dark matter, JHEP09 (2016) 018 [arXiv:1605.07940] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    Y. Cui and F. D’Eramo, Surprises from complete vector portal theories: New insights into the dark sector and its interplay with Higgs physics, Phys. Rev.D 96 (2017) 095006 [arXiv:1705.03897] [INSPIRE].
  25. [25]
    A.L. Fitzpatrick, W. Haxton, E. Katz, N. Lubbers and Y. Xu, The Effective Field Theory of Dark Matter Direct Detection, JCAP02 (2013) 004 [arXiv:1203.3542] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    N. Anand, A.L. Fitzpatrick and W.C. Haxton, Weakly interacting massive particle-nucleus elastic scattering response, Phys. Rev.C 89 (2014) 065501 [arXiv:1308.6288] [INSPIRE].
  27. [27]
    U. Haisch and F. Kahlhoefer, On the importance of loop-induced spin-independent interactions for dark matter direct detection, JCAP04 (2013) 050 [arXiv:1302.4454] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    A. Crivellin and U. Haisch, Dark matter direct detection constraints from gauge bosons loops, Phys. Rev.D 90 (2014) 115011 [arXiv:1408.5046] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    F. D’Eramo, B.J. Kavanagh and P. Panci, You can hide but you have to run: direct detection with vector mediators, JHEP08 (2016) 111 [arXiv:1605.04917] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    A. Crivellin, F. D’Eramo and M. Procura, New Constraints on Dark Matter Effective Theories from Standard Model Loops, Phys. Rev. Lett.112 (2014) 191304 [arXiv:1402.1173] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    F. Bishara, J. Brod, B. Grinstein and J. Zupan, Renormalization Group Effects in Dark Matter Interactions, arXiv:1809.03506 [INSPIRE].
  32. [32]
    T. Li, Revisiting the direct detection of dark matter in simplified models, Phys. Lett.B 782 (2018) 497 [arXiv:1804.02120] [INSPIRE].
  33. [33]
    N.F. Bell, G. Busoni and I.W. Sanderson, Loop Effects in Direct Detection, JCAP08 (2018) 017 [Erratum ibid.01 (2019) E01] [arXiv:1803.01574] [INSPIRE].
  34. [34]
    J. Hisano, K. Ishiwata and N. Nagata, A complete calculation for direct detection of Wino dark matter, Phys. Lett.B 690 (2010) 311 [arXiv:1004.4090] [INSPIRE].
  35. [35]
    J. Hisano, K. Ishiwata, N. Nagata and T. Takesako, Direct Detection of Electroweak-Interacting Dark Matter, JHEP07 (2011) 005 [arXiv:1104.0228] [INSPIRE].
  36. [36]
    F. Ertas and F. Kahlhoefer, Loop-induced direct detection signatures from CP-violating scalar mediators, JHEP06 (2019) 052 [arXiv:1902.11070] [INSPIRE].
  37. [37]
    K. Ishiwata and T. Toma, Probing pseudo Nambu-Goldstone boson dark matter at loop level, JHEP12 (2018) 089 [arXiv:1810.08139] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    T. Abe, M. Fujiwara and J. Hisano, Loop corrections to dark matter direct detection in a pseudoscalar mediator dark matter model, JHEP02 (2019) 028 [arXiv:1810.01039] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    W. Chao, G.-J. Ding, X.-G. He and M. Ramsey-Musolf, Scalar Electroweak Multiplet Dark Matter, JHEP08 (2019) 058 [arXiv:1812.07829] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    K. Ghorbani and P.H. Ghorbani, Leading Loop Effects in Pseudoscalar-Higgs Portal Dark Matter, JHEP05 (2019) 096 [arXiv:1812.04092] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    T. Li and P. Wu, Simplified dark matter models with loop effects in direct detection and the constraints from indirect detection and collider search, Chin. Phys.C 43 (2019) 113102 [arXiv:1904.03407] [INSPIRE].
  42. [42]
    J. Hisano, R. Nagai and N. Nagata, Effective Theories for Dark Matter Nucleon Scattering, JHEP05 (2015) 037 [arXiv:1502.02244] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    J. Hisano, Effective theory approach to direct detection of dark matter, arXiv:1712.02947 [INSPIRE].
  44. [44]
    J. Hisano, K. Ishiwata and N. Nagata, Gluon contribution to the dark matter direct detection, Phys. Rev.D 82 (2010) 115007 [arXiv:1007.2601] [INSPIRE].
  45. [45]
    J. Hisano, K. Ishiwata and N. Nagata, QCD Effects on Direct Detection of Wino Dark Matter, JHEP06 (2015) 097 [arXiv:1504.00915] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    R.N. Mohapatra and R.E. Marshak, Local B-L Symmetry of Electroweak Interactions, Majorana Neutrinos and Neutron Oscillations, Phys. Rev. Lett.44 (1980) 1316 [Erratum ibid.44 (1980) 1643] [INSPIRE].
  47. [47]
    W. Chao, H.-k. Guo and Y. Zhang, Majorana Dark matter with B+L gauge symmetry, JHEP04 (2017) 034 [arXiv:1604.01771] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    W. Chao, Phenomenology of the gauge symmetry for right-handed fermions, Eur. Phys. J.C 78 (2018) 103 [arXiv:1707.07858] [INSPIRE].
  49. [49]
    T. Abe and R. Sato, Quantum corrections to the spin-independent cross section of the inert doublet dark matter, JHEP03 (2015) 109 [arXiv:1501.04161] [INSPIRE].CrossRefGoogle Scholar
  50. [50]
    Spin Muon collaboration, A New measurement of the spin dependent structure function g1(x) of the deuteron, Phys. Lett.B 357 (1995) 248 [INSPIRE].
  51. [51]
    H.H. Patel, Package-X: A Mathematica package for the analytic calculation of one-loop integrals, Comput. Phys. Commun.197 (2015) 276 [arXiv:1503.01469] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  52. [52]
    H.H. Patel, Package-X 2.0: A Mathematica package for the analytic calculation of one-loop integrals, Comput. Phys. Commun.218 (2017) 66 [arXiv:1612.00009] [INSPIRE].
  53. [53]
    V.A. Novikov, M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Calculations in External Fields in Quantum Chromodynamics. Technical Review, Fortsch. Phys.32 (1984) 585 [INSPIRE].
  54. [54]
    V. Shtabovenko, R. Mertig and F. Orellana, New Developments in FeynCalc 9.0, Comput. Phys. Commun.207 (2016) 432 [arXiv:1601.01167] [INSPIRE].
  55. [55]
    F. D’Eramo and M. Procura, Connecting Dark Matter UV Complete Models to Direct Detection Rates via Effective Field Theory, JHEP04 (2015) 054 [arXiv:1411.3342] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    R.J. Hill and M.P. Solon, Standard Model anatomy of WIMP dark matter direct detection I: weak-scale matching, Phys. Rev.D 91 (2015) 043504 [arXiv:1401.3339] [INSPIRE].
  57. [57]
    R.J. Hill and M.P. Solon, Standard Model anatomy of WIMP dark matter direct detection II: QCD analysis and hadronic matrix elements, Phys. Rev.D 91 (2015) 043505 [arXiv:1409.8290] [INSPIRE].
  58. [58]
    K.A. Mohan, D. Sengupta, T.M.P. Tait, B. Yan and C.P. Yuan, Direct Detection and LHC constraints on a t-Channel Simplified Model of Majorana Dark Matter at One Loop, JHEP05 (2019) 115 [arXiv:1903.05650] [INSPIRE].
  59. [59]
    PandaX-II collaboration, Spin-Dependent Weakly-Interacting-Massive-Particle-Nucleon Cross section Limits from First Data of PandaX-II Experiment, Phys. Rev. Lett.118 (2017) 071301 [Erratum ibid.120 (2018) 049902] [arXiv:1611.06553] [INSPIRE].
  60. [60]
    XENON collaboration, Constraining the spin-dependent WIMP-nucleon cross sections with XENON1T, Phys. Rev. Lett.122 (2019) 141301 [arXiv:1902.03234] [INSPIRE].
  61. [61]
    G. Bélanger, F. Boudjema, A. Goudelis, A. Pukhov and B. Zaldivar, MicrOMEGAs5.0: Freeze-in, Comput. Phys. Commun.231 (2018) 173 [arXiv:1801.03509] [INSPIRE].
  62. [62]
    J. Pumplin, D.R. Stump, J. Huston, H.L. Lai, P.M. Nadolsky and W.K. Tung, New generation of parton distributions with uncertainties from global QCD analysis, JHEP07 (2002) 012 [hep-ph/0201195] [INSPIRE].
  63. [63]
    ATLAS collaboration, Constraints on mediator-based dark matter and scalar dark energy models using \( \sqrt{s} \) = 13 TeV pp collision data collected by the ATLAS detector, JHEP05 (2019) 142 [arXiv:1903.01400] [INSPIRE].
  64. [64]
    M. Chala, F. Kahlhoefer, M. McCullough, G. Nardini and K. Schmidt-Hoberg, Constraining Dark Sectors with Monojets and Dijets, JHEP07 (2015) 089 [arXiv:1503.05916] [INSPIRE].
  65. [65]
    F. Kahlhoefer, K. Schmidt-Hoberg, T. Schwetz and S. Vogl, Implications of unitarity and gauge invariance for simplified dark matter models, JHEP02 (2016) 016 [arXiv:1510.02110] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Center for Advanced Quantum Studies, Department of PhysicsBeijing Normal UniversityBeijingChina

Personalised recommendations