Advertisement

Journal of High Energy Physics

, 2019:12 | Cite as

Reparameterization invariant operator basis for NRQED and HQET

  • Andrew Kobach
  • Sridip PalEmail author
Open Access
Regular Article - Theoretical Physics
  • 16 Downloads

Abstract

We provide a self-contained discussion of how reparameterization invariance connects a rotationally-invariant heavy particle effective theory with a single heavy fermion to a Lorentz-invariant theory. Furthermore, using Hilbert-series methods, a Lorentz- invariant operator basis is tabulated, up to and including operators of order 1/M4, when the fermion couples to an external U(1) or SU(3) gauge interaction.

Keywords

Effective Field Theories Heavy Quark Physics Conformal Field Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    M.A. Shifman and M.B. Voloshin, On Production of D and D Mesons in B Meson Decays, Sov. J. Nucl. Phys.47 (1988) 511 [INSPIRE].Google Scholar
  2. [2]
    N. Isgur and M.B. Wise, Weak Decays of Heavy Mesons in the Static Quark Approximation, Phys. Lett.B 232 (1989) 113 [INSPIRE].
  3. [3]
    H. Georgi, An Effective Field Theory for Heavy Quarks at Low-energies, Phys. Lett.B 240 (1990) 447 [INSPIRE].
  4. [4]
    M.E. Luke and A.V. Manohar, Reparametrization invariance constraints on heavy particle effective field theories, Phys. Lett.B 286 (1992) 348 [hep-ph/9205228] [INSPIRE].
  5. [5]
    A.V. Manohar, The HQET/NRQCD Lagrangian to order α/m 3 , Phys. Rev.D 56 (1997) 230 [hep-ph/9701294] [INSPIRE].
  6. [6]
    A.V. Manohar and M.B. Wise, Heavy quark physics, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol.10 (2000) 1 [INSPIRE].Google Scholar
  7. [7]
    N. Brambilla, D. Gromes and A. Vairo, Poincaré invariance constraints on NRQCD and potential NRQCD, Phys. Lett.B 576 (2003) 314 [hep-ph/0306107] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    J. Heinonen, R.J. Hill and M.P. Solon, Lorentz invariance in heavy particle effective theories, Phys. Rev.D 86 (2012) 094020 [arXiv:1208.0601] [INSPIRE].
  9. [9]
    T. Mannel and K.K. Vos, Reparametrization Invariance and Partial Re-Summations of the Heavy Quark Expansion, JHEP06 (2018) 115 [arXiv:1802.09409] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    A. Kobach and S. Pal, Hilbert Series and Operator Basis for NRQED and NRQCD/HQET, Phys. Lett.B 772 (2017) 225 [arXiv:1704.00008] [INSPIRE].
  11. [11]
    A. Kobach and S. Pal, Conformal Structure of the Heavy Particle EFT Operator Basis, Phys. Lett.B 783 (2018) 311 [arXiv:1804.01534] [INSPIRE].
  12. [12]
    R. Sundrum, Reparameterization invariance to all orders in heavy quark effective theory, Phys. Rev.D 57 (1998) 331 [hep-ph/9704256] [INSPIRE].
  13. [13]
    A. Gunawardana and G. Paz, On HQET and NRQCD Operators of Dimension 8 and Above, JHEP07 (2017) 137 [arXiv:1702.08904] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    R.J. Hill, G. Lee, G. Paz and M.P. Solon, NRQED Lagrangian at order 1/M 4 , Phys. Rev.D 87 (2013) 053017 [arXiv:1212.4508] [INSPIRE].
  15. [15]
    H.D. Politzer, Power Corrections at Short Distances, Nucl. Phys.B 172 (1980) 349 [INSPIRE].
  16. [16]
    H. Georgi, On-shell effective field theory, Nucl. Phys.B 361 (1991) 339 [INSPIRE].
  17. [17]
    B. Feng, A. Hanany and Y.-H. He, Counting gauge invariants: The Plethystic program, JHEP03 (2007) 090 [hep-th/0701063] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    E.E. Jenkins and A.V. Manohar, Algebraic Structure of Lepton and Quark Flavor Invariants and CP-violation, JHEP10 (2009) 094 [arXiv:0907.4763] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    A. Hanany, E.E. Jenkins, A.V. Manohar and G. Torri, Hilbert Series for Flavor Invariants of the Standard Model, JHEP03 (2011) 096 [arXiv:1010.3161] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    L. Lehman and A. Martin, Hilbert Series for Constructing Lagrangians: expanding the phenomenologist’s toolbox, Phys. Rev.D 91 (2015) 105014 [arXiv:1503.07537] [INSPIRE].
  21. [21]
    L. Lehman and A. Martin, Low-derivative operators of the Standard Model effective field theory via Hilbert series methods, JHEP02 (2016) 081 [arXiv:1510.00372] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    B. Henning, X. Lu, T. Melia and H. Murayama, Hilbert series and operator bases with derivatives in effective field theories, Commun. Math. Phys.347 (2016) 363 [arXiv:1507.07240] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    B. Henning, X. Lu, T. Melia and H. Murayama, 2, 84, 30, 993, 560, 15456, 11962, 261485, . . .: Higher dimension operators in the SM EFT, JHEP08 (2017) 016 [Erratum ibid.09 (2019) 019] [arXiv:1512.03433] [INSPIRE].
  24. [24]
    B. Henning, X. Lu, T. Melia and H. Murayama, Operator bases, S-matrices and their partition functions, JHEP10 (2017) 199 [arXiv:1706.08520] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    C.W. Bauer, S. Fleming and M.E. Luke, Summing Sudakov logarithms in B → X sγ in effective field theory, Phys. Rev.D 63 (2000) 014006 [hep-ph/0005275] [INSPIRE].
  26. [26]
    C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An Effective field theory for collinear and soft gluons: Heavy to light decays, Phys. Rev.D 63 (2001) 114020 [hep-ph/0011336] [INSPIRE].
  27. [27]
    M. Beneke, A.P. Chapovsky, M. Diehl and T. Feldmann, Soft collinear effective theory and heavy to light currents beyond leading power, Nucl. Phys.B 643 (2002) 431 [hep-ph/0206152] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Theoretical Division, Los Alamos National LaboratoryLos AlamosU.S.A.
  2. 2.Physics DepartmentUniversity of CaliforniaSan DiegoU.S.A.

Personalised recommendations