Resummed prediction for Higgs boson production through b\( \overline{\mathrm{b}} \) annihilation at N3LL

  • A.H. Ajjath
  • Amlan Chakraborty
  • Goutam DasEmail author
  • Pooja Mukherjee
  • V. Ravindran
Open Access
Regular Article - Theoretical Physics


We present an accurate theoretical prediction for the production of Higgs bo- son through bottom quark annihilation at the LHC up to next-to-next-to-next-to leading order (N3LO) plus next-to-next-to-next-to-leading logarithmic (N3LL) accuracy. We de- termine the third order perturbative Quantum Chromodynamics (QCD) correction to the process dependent constant in the resummed expression using the three loop bottom quark form factor and third order quark soft distribution function. Thanks to the recent compu- tation of N3LO corrections to this production cross-section from all the partonic channels, an accurate matching can be obtained for a consistent predictions at N3LO+N3LL accu- racy in QCD. We have studied in detail the impact of resummed threshold contributions to inclusive cross-sections at various centre-of-mass energies and also discussed their sensi- tivity to renormalization and factorization scales at next-to-next-to leading order (NNLO) matched with next-to-next-to leading logarithm (NNLL). At N3LO+N3LL, we predict the cross-section for different centre-of-mass energies using the recently available results in [1] as well as study the renormalization scale dependence at the same order.


Perturbative QCD Resummation 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    C. Duhr, F. Dulat and B. Mistlberger, Higgs production in bottom-quark fusion to third order in the strong coupling, arXiv:1904.09990 [INSPIRE].
  2. [2]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett.B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  3. [3]
    CMS collaboration, Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC, Phys. Lett.B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  4. [4]
    LHC Higgs Cross Section Working Group, Handbook of LHC Higgs Cross Sections: 3. Higgs Properties, arXiv:1307.1347 [INSPIRE].
  5. [5]
    LHC Higgs Cross Section Working Group, Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector, arXiv:1610.07922 [INSPIRE].
  6. [6]
    ATLAS collaboration, Combined measurements of Higgs boson production and decay using up to 80 fb 1of proton-proton collision data at \( \sqrt{s} \) = 13 TeV collected with the ATLAS experiment, ATLAS-CONF-2019-005 (2019).Google Scholar
  7. [7]
    CMS collaboration, Combined measurements of Higgs boson couplings in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Eur. Phys. J.C 79 (2019) 421 [arXiv:1809.10733] [INSPIRE].
  8. [8]
    C. Englert, O. Mattelaer and M. Spannowsky, Measuring the Higgs-bottom coupling in weak boson fusion, Phys. Lett.B 756 (2016) 103 [arXiv:1512.03429] [INSPIRE].
  9. [9]
    J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, The Higgs hunter’s guide, Addison- Wesley, Menlo Park U.S.A. (1990).Google Scholar
  10. [10]
    S. Dittmaier, M. Krämer and M. Spira, Higgs radiation off bottom quarks at the Tevatron and the CERN LHC, Phys. Rev.D 70 (2004) 074010 [hep-ph/0309204] [INSPIRE].
  11. [11]
    S. Dawson, C.B. Jackson, L. Reina and D. Wackeroth, Exclusive Higgs boson production with bottom quarks at hadron colliders, Phys. Rev.D 69 (2004) 074027 [hep-ph/0311067] [INSPIRE].
  12. [12]
    M. Wiesemann, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni and P. Torrielli, Higgs production in association with bottom quarks, JHEP02 (2015) 132 [arXiv:1409.5301] [INSPIRE].
  13. [13]
    D. Dicus, T. Stelzer, Z. Sullivan and S. Willenbrock, Higgs boson production in association with bottom quarks at next-to-leading order, Phys. Rev.D 59 (1999) 094016 [hep-ph/9811492] [INSPIRE].
  14. [14]
    C. Balázs, H.-J. He and C.P. Yuan, QCD corrections to scalar production via heavy quark fusion at hadron colliders, Phys. Rev.D 60 (1999) 114001 [hep-ph/9812263] [INSPIRE].
  15. [15]
    R.V. Harlander and W.B. Kilgore, Higgs boson production in bottom quark fusion at next-to-next-to leading order, Phys. Rev.D 68 (2003) 013001 [hep-ph/0304035] [INSPIRE].
  16. [16]
    V. Ravindran, Higher-order threshold effects to inclusive processes in QCD, Nucl. Phys.B 752 (2006) 173 [hep-ph/0603041] [INSPIRE].
  17. [17]
    T. Ahmed, N. Rana and V. Ravindran, Higgs boson production through b \( \overline{b} \)annihilation at threshold in N 3LO QCD, JHEP10 (2014) 139 [arXiv:1408.0787] [INSPIRE].
  18. [18]
    M. Bonvini, A.S. Papanastasiou and F.J. Tackmann, Matched predictions for the b \( \overline{b} \)H cross section at the 13 TeV LHC, JHEP10 (2016) 053 [arXiv:1605.01733] [INSPIRE].
  19. [19]
    S. Forte, D. Napoletano and M. Ubiali, Higgs production in bottom-quark fusion in a matched scheme, Phys. Lett.B 751 (2015) 331 [arXiv:1508.01529] [INSPIRE].
  20. [20]
    M.A. Ebert, J.K.L. Michel and F.J. Tackmann, Resummation Improved Rapidity Spectrum for Gluon Fusion Higgs Production, JHEP05 (2017) 088 [arXiv:1702.00794] [INSPIRE].
  21. [21]
    G.F. Sterman, Summation of Large Corrections to Short Distance Hadronic Cross-Sections, Nucl. Phys.B 281 (1987) 310 [INSPIRE].
  22. [22]
    S. Catani and L. Trentadue, Resummation of the QCD Perturbative Series for Hard Processes, Nucl. Phys.B 327 (1989) 323 [INSPIRE].
  23. [23]
    S. Catani and L. Trentadue, Comment on QCD exponentiation at large x, Nucl. Phys.B 353 (1991) 183 [INSPIRE].
  24. [24]
    C. Anastasiou, C. Duhr, F. Dulat, F. Herzog and B. Mistlberger, Higgs Boson Gluon-Fusion Production in QCD at Three Loops, Phys. Rev. Lett.114 (2015) 212001 [arXiv:1503.06056] [INSPIRE].
  25. [25]
    C. Anastasiou et al., High precision determination of the gluon fusion Higgs boson cross-section at the LHC, JHEP05 (2016) 058 [arXiv:1602.00695] [INSPIRE].
  26. [26]
    M. Bonvini and S. Marzani, Resummed Higgs cross section at N 3LL, JHEP09 (2014) 007 [arXiv:1405.3654] [INSPIRE].
  27. [27]
    M. Bonvini, S. Marzani, C. Muselli and L. Rottoli, On the Higgs cross section at N 3LO+N 3LL and its uncertainty, JHEP08 (2016) 105 [arXiv:1603.08000] [INSPIRE].
  28. [28]
    M. Bonvini and L. Rottoli, Three loop soft function for N 3LL′ gluon fusion Higgs production in soft-collinear effective theory, Phys. Rev.D 91 (2015) 051301 [arXiv:1412.3791] [INSPIRE].
  29. [29]
    T. Gehrmann and D. Kara, The H b\( \overline{\mathrm{b}} \)form factor to three loops in QCD, JHEP09 (2014) 174 [arXiv:1407.8114] [INSPIRE].
  30. [30]
    T. Ahmed, M. Mahakhud, N. Rana and V. Ravindran, Drell-Yan Production at Threshold to Third Order in QCD, Phys. Rev. Lett.113 (2014) 112002 [arXiv:1404.0366] [INSPIRE].
  31. [31]
    S. Catani, D. de Florian, M. Grazzini and P. Nason, Soft gluon resummation for Higgs boson production at hadron colliders, JHEP07 (2003) 028 [hep-ph/0306211] [INSPIRE].
  32. [32]
    S. Moch, J.A.M. Vermaseren and A. Vogt, Higher-order corrections in threshold resummation, Nucl. Phys.B 726 (2005) 317 [hep-ph/0506288] [INSPIRE].
  33. [33]
    J. Henn, A.V. Smirnov, V.A. Smirnov, M. Steinhauser and R.N. Lee, Four-loop photon quark form factor and cusp anomalous dimension in the large-Nc limit of QCD, JHEP03 (2017) 139 [arXiv:1612.04389] [INSPIRE].
  34. [34]
    S. Moch, B. Ruijl, T. Ueda, J.A.M. Vermaseren and A. Vogt, Four-Loop Non-Singlet Splitting Functions in the Planar Limit and Beyond, JHEP10 (2017) 041 [arXiv:1707.08315] [INSPIRE].
  35. [35]
    A. Grozin, Four-loop cusp anomalous dimension in QED, JHEP06 (2018) 073 [arXiv:1805.05050] [INSPIRE].
  36. [36]
    J.M. Henn, T. Peraro, M. Stahlhofen and P. Wasser, Matter dependence of the four-loop cusp anomalous dimension, Phys. Rev. Lett.122 (2019) 201602 [arXiv:1901.03693] [INSPIRE].
  37. [37]
    J. Davies, A. Vogt, B. Ruijl, T. Ueda and J.A.M. Vermaseren, Large-N fcontributions to the four-loop splitting functions in QCD, Nucl. Phys.B 915 (2017) 335 [arXiv:1610.07477] [INSPIRE].
  38. [38]
    R.N. Lee, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, The \( {n}_f^2 \)contributions to fermionic four-loop form factors, Phys. Rev.D 96 (2017) 014008 [arXiv:1705.06862] [INSPIRE].
  39. [39]
    J.A. Gracey, Anomalous dimension of nonsinglet Wilson operators at O (1 /N(f )) in deep inelastic scattering, Phys. Lett.B 322 (1994) 141 [hep-ph/9401214] [INSPIRE].
  40. [40]
    M. Beneke and V.M. Braun, Power corrections and renormalons in Drell-Yan production, Nucl. Phys.B 454 (1995) 253 [hep-ph/9506452] [INSPIRE].
  41. [41]
    S. Moch, B. Ruijl, T. Ueda, J.A.M. Vermaseren and A. Vogt, On quartic colour factors in splitting functions and the gluon cusp anomalous dimension, Phys. Lett.B 782 (2018) 627 [arXiv:1805.09638] [INSPIRE].
  42. [42]
    R.N. Lee, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, Four-loop quark form factor with quartic fundamental colour factor, JHEP02 (2019) 172 [arXiv:1901.02898] [INSPIRE].
  43. [43]
    R.V. Harlander, S. Liebler and H. Mantler, SusHi: A program for the calculation of Higgs production in gluon fusion and bottom-quark annihilation in the Standard Model and the MSSM, Comput. Phys. Commun.184 (2013) 1605 [arXiv:1212.3249] [INSPIRE].
  44. [44]
    S. Catani, M.L. Mangano, P. Nason and L. Trentadue, The Resummation of soft gluons in hadronic collisions, Nucl. Phys.B 478 (1996) 273 [hep-ph/9604351] [INSPIRE].
  45. [45]
    L.A. Harland-Lang, A.D. Martin, P. Motylinski and R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs, Eur. Phys. J.C 75 (2015) 204 [arXiv:1412.3989] [INSPIRE].
  46. [46]
    A. Buckley et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J.C 75 (2015) 132 [arXiv:1412.7420] [INSPIRE].
  47. [47]
    A. Accardi et al., A Critical Appraisal and Evaluation of Modern PDFs, Eur. Phys. J.C 76 (2016) 471 [arXiv:1603.08906] [INSPIRE].
  48. [48]
    S. Moch, J.A.M. Vermaseren and A. Vogt, The Three loop splitting functions in QCD: The Nonsinglet case, Nucl. Phys.B 688 (2004) 101 [hep-ph/0403192] [INSPIRE].
  49. [49]
    A. von Manteuffel and R.M. Schabinger, Quark and gluon form factors in four loop QCD: The \( {N}_f^2 \)and N q𝛾N fcontributions, Phys. Rev.D 99 (2019) 094014 [arXiv:1902.08208] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.The Institute of Mathematical SciencesHBNIChennaiIndia
  2. 2.Theory GroupDeutsches Elektronen-Synchrotron (DESY)HamburgGermany

Personalised recommendations