Advertisement

Thermodynamic instabilities of generalized exotic BTZ black holes

  • Wan CongEmail author
  • Robert B. Mann
Open Access
Regular Article - Theoretical Physics
  • 7 Downloads

Abstract

We examine the conjecture that black holes violating the reverse isoperimetric inequality have negative specific heat at constant volume CV [1]. We test this conjecture on the family of generalized exotic Bañados, Teitelboim and Zanelli (BTZ) black holes and find that CV can be positive even when the reverse isoperimetric inequality is violated, providing a counter example to the conjecture. However in all cases where CV is positive, the specific heat at constant pressure CP is negative, indicating that generalized exotic black holes are thermodynamically unstable, suggesting that a broader version of the conjecture might hold.

Keywords

Black Holes Classical Theories of Gravity 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    C.V. Johnson, Instability of Super-Entropic Black Holes in Extended Thermodynamics, arXiv:1906.00993 [INSPIRE].
  2. [2]
    D. Kubizňák, R.B. Mann and M. Teo, Black hole chemistry: thermodynamics with Lambda, Class. Quant. Grav.34 (2017) 063001 [arXiv:1608.06147] [INSPIRE].
  3. [3]
    M. Cvetǐc, G.W. Gibbons, D. Kubizňák and C.N. Pope, Black Hole Enthalpy and an Entropy Inequality for the Thermodynamic Volume, Phys. Rev.D 84 (2011) 024037 [arXiv:1012.2888] [INSPIRE].
  4. [4]
    B.P. Dolan, The cosmological constant and the black hole equation of state, Class. Quant. Grav.28 (2011) 125020 [arXiv:1008.5023] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    D. Kastor, S. Ray and J. Traschen, Enthalpy and the Mechanics of AdS Black Holes, Class. Quant. Grav.26 (2009) 195011 [arXiv:0904.2765] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    M.M. Caldarelli, G. Cognola and D. Klemm, Thermodynamics of Kerr-Newman-AdS black holes and conformal field theories, Class. Quant. Grav.17 (2000) 399 [hep-th/9908022] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    S. Mbarek and R.B. Mann, Thermodynamic Volume of Cosmological Solitons, Phys. Lett.B 765 (2017) 352 [arXiv:1611.01131] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    R.A. Hennigar, D. Kubizňák and R.B. Mann, Entropy Inequality Violations from Ultraspinning Black Holes, Phys. Rev. Lett.115 (2015) 031101 [arXiv:1411.4309] [INSPIRE].
  9. [9]
    D. Klemm, Four-dimensional black holes with unusual horizons, Phys. Rev.D 89 (2014) 084007 [arXiv:1401.3107] [INSPIRE].
  10. [10]
    R.A. Hennigar, D. Kubizňák, R.B. Mann and N. Musoke, Ultraspinning limits and super-entropic black holes, JHEP06 (2015) 096 [arXiv:1504.07529] [INSPIRE].
  11. [11]
    W.G. Brenna, R.B. Mann and M. Park, Mass and Thermodynamic Volume in Lifshitz Spacetimes, Phys. Rev.D 92 (2015) 044015 [arXiv:1505.06331] [INSPIRE].
  12. [12]
    S.M. Noorbakhsh and M. Ghominejad, Ultra-Spinning Gauged Supergravity Black Holes and their Kerr/CFT Correspondence, Phys. Rev.D 95 (2017) 046002 [arXiv:1611.02324] [INSPIRE].
  13. [13]
    S.M. Noorbakhsh and M. Ghominejad, Higher Dimensional Charged AdS Black Holes at Ultra-spinning Limit and Their 2d CFT Duals, arXiv:1702.03448 [INSPIRE].
  14. [14]
    X.-H. Feng, H.-S. Liu, W.-T. Lu and H. Lü, Horndeski Gravity and the Violation of Reverse Isoperimetric Inequality, Eur. Phys. J.C 77 (2017) 790 [arXiv:1705.08970] [INSPIRE].
  15. [15]
    S.M. Noorbakhsh and M.H. Vahidinia, Extremal Vanishing Horizon Kerr-AdS Black Holes at Ultraspinning Limit, JHEP01 (2018) 042 [arXiv:1708.08654] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    R.B. Mann, Super-Entropic Black Holes, Springer Proc. Phys.208 (2018) 105 [INSPIRE].CrossRefGoogle Scholar
  17. [17]
    M. Bañados, C. Teitelboim and J. Zanelli, The Black hole in three-dimensional space-time, Phys. Rev. Lett.69 (1992) 1849 [hep-th/9204099] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    C.V. Johnson, Specific Heats and Schottky Peaks for Black Holes in Extended Thermodynamics, arXiv:1905.00539 [INSPIRE].
  19. [19]
    A.M. Frassino, R.B. Mann and J.R. Mureika, Extended Thermodynamics and Complexity in Gravitational Chern-Simons Theory, arXiv:1906.07190 [INSPIRE].
  20. [20]
    A.M. Frassino, R.B. Mann and J.R. Mureika, Lower-Dimensional Black Hole Chemistry, Phys. Rev.D 92 (2015) 124069 [arXiv:1509.05481] [INSPIRE].ADSGoogle Scholar
  21. [21]
    E. Witten, (2 + 1)-Dimensional Gravity as an Exactly Soluble System, Nucl. Phys.B 311 (1988) 46 [INSPIRE].
  22. [22]
    P.K. Townsend and B. Zhang, Thermodynamics of “Exotic” Bañados-Teitelboim-Zanelli Black Holes, Phys. Rev. Lett.110 (2013) 241302 [arXiv:1302.3874] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    O. Mǐskovíc and R. Olea, Background-independent charges in Topologically Massive Gravity, JHEP12 (2009) 046 [arXiv:0909.2275] [INSPIRE].
  24. [24]
    S. Carlip, J. Gegenberg and R.B. Mann, Black holes in three-dimensional topological gravity, Phys. Rev.D 51 (1995) 6854 [gr-qc/9410021] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    S. Carlip and J. Gegenberg, Gravitating topological matter in (2 + 1)-dimensions, Phys. Rev.D 44 (1991) 424 [INSPIRE].ADSMathSciNetGoogle Scholar
  26. [26]
    M. Bañados, Constant curvature black holes, Phys. Rev.D 57 (1998) 1068 [gr-qc/9703040] [INSPIRE].
  27. [27]
    M. Bañados, A. Gomberoff and C. Martínez, Anti-de Sitter space and black holes, Class. Quant. Grav.15 (1998) 3575 [hep-th/9805087] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    S.N. Solodukhin, Holography with gravitational Chern-Simons, Phys. Rev.D 74 (2006) 024015 [hep-th/0509148] [INSPIRE].
  29. [29]
    D. Kubizňák and R.B. Mann, P − V criticality of charged AdS black holes, JHEP07 (2012) 033 [arXiv:1205.0559] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of WaterlooWaterlooCanada
  2. 2.Perimeter Institute for Theoretical PhysicsWaterlooCanada

Personalised recommendations