Advertisement

Journal of High Energy Physics

, 2018:202 | Cite as

Mixed global anomalies and boundary conformal field theories

  • Tokiro NumasawaEmail author
  • Satoshi Yamaguch
Open Access
Regular Article - Theoretical Physics

Abstract

We consider the relation between mixed global gauge gravitational anomalies and boundary conformal field theory in WZW models for simple Lie groups. The discrete symmetries of consideration are the centers of the simple Lie groups. These mixed anomalies prevent gauging them i.e, taking the orbifold by the center. The absence of anomalies impose conditions on the levels of WZW models. Next, we study the conformal boundary conditions for the original theories. We consider the existence of a conformal boundary state invariant under the action of the center. This also gives conditions on the levels of WZW models. By considering the combined action of the center and charge conjugation on boundary states, we reproduce the condition obtained in the orbifold analysis.

Keywords

Anomalies in Field and String Theories Conformal Field Theory Discrete Symmetries 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    G. ’t Hooft, Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking, NATO Sci. Ser. B 59 (1980) 135.Google Scholar
  2. [2]
    C. Csáki and H. Murayama, Discrete anomaly matching, Nucl. Phys. B 515 (1998) 114 [hep-th/9710105] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    X. Chen, Z.-C. Gu, Z.-X. Liu and X.-G. Wen, Symmetry protected topological orders and the group cohomology of their symmetry group, Phys. Rev. B 87 (2013) 155114 [arXiv:1106.4772] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    C.G. Callan Jr. and J.A. Harvey, Anomalies and Fermion Zero Modes on Strings and Domain Walls, Nucl. Phys. B 250 (1985) 427 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    A. Kapustin and R. Thorngren, Anomalies of discrete symmetries in three dimensions and group cohomology, Phys. Rev. Lett. 112 (2014) 231602 [arXiv:1403.0617] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    A. Kapustin and R. Thorngren, Anomalies of discrete symmetries in various dimensions and group cohomology, arXiv:1404.3230 [INSPIRE].
  7. [7]
    D. Gaiotto, A. Kapustin, N. Seiberg and B. Willett, Generalized Global Symmetries, JHEP 02 (2015) 172 [arXiv:1412.5148] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    R. Thorngren and C. von Keyserlingk, Higher SPT’s and a generalization of anomaly in-flow, arXiv:1511.02929 [INSPIRE].
  9. [9]
    D. Gaiotto, A. Kapustin, Z. Komargodski and N. Seiberg, Theta, Time Reversal and Temperature, JHEP 05 (2017) 091 [arXiv:1703.00501] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    Y. Tanizaki and Y. Kikuchi, Vacuum structure of bifundamental gauge theories at finite topological angles, JHEP 06 (2017) 102 [arXiv:1705.01949] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    H. Shimizu and K. Yonekura, Anomaly constraints on deconfinement and chiral phase transition, Phys. Rev. D 97 (2018) 105011 [arXiv:1706.06104] [INSPIRE].ADSGoogle Scholar
  12. [12]
    S.C. Furuya and M. Oshikawa, Symmetry Protection of Critical Phases and a Global Anomaly in 1 + 1 Dimensions, Phys. Rev. Lett. 118 (2017) 021601 [arXiv:1503.07292] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    N. Seiberg and E. Witten, Gapped Boundary Phases of Topological Insulators via Weak Coupling, PTEP 2016 (2016) 12C101 [arXiv:1602.04251] [INSPIRE].
  14. [14]
    Y. Tachikawa and K. Yonekura, On time-reversal anomaly of 2+1d topological phases, PTEP 2017 (2017) 033B04 [arXiv:1610.07010] [INSPIRE].
  15. [15]
    Y. Tachikawa and K. Yonekura, More on time-reversal anomaly of 2+1d topological phases, Phys. Rev. Lett. 119 (2017) 111603 [arXiv:1611.01601] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    J.L. Cardy, Boundary Conditions, Fusion Rules and the Verlinde Formula, Nucl. Phys. B 324 (1989) 581 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    I. Affleck, T. Kennedy, E.H. Lieb and H. Tasaki, Rigorous Results on Valence Bond Ground States in Antiferromagnets, Phys. Rev. Lett. 59 (1987) 799 [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    I. Affleck, T. Kennedy, E.H. Lieb and H. Tasaki, Valence bond ground states in isotropic quantum antiferromagnets, Commun. Math. Phys. 115 (1988) 477.ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    T. Kennedy, Exact diagonalisations of open spin-1 chains, J. Phys. Cond. Matt. 2 (1990) 5737.ADSCrossRefGoogle Scholar
  20. [20]
    B. Han, A. Tiwari, C.-T. Hsieh and S. Ryu, Boundary conformal field theory and symmetry protected topological phases in 2 + 1 dimensions, Phys. Rev. B 96 (2017) 125105 [arXiv:1704.01193] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    N. Bultinck, R. Vanhove, J. Haegeman and F. Verstraete, Global anomaly detection in two-dimensional symmetry-protected topological phases, Phys. Rev. Lett. 120 (2018) 156601 [arXiv:1710.02314] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    D.S. Freed and C. Vafa, Global anomalies on orbifolds, Commun. Math. Phys. 110 (1987) 349 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    G. Felder, K. Gawedzki and A. Kupiainen, Spectra of Wess-Zumino-Witten models with arbitrary simple groups, Commun. Math. Phys. 117 (1988) 127.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    O.M. Sule, X. Chen and S. Ryu, Symmetry-protected topological phases and orbifolds: Generalized Laughlin’s argument, Phys. Rev. B 88 (2013) 075125 [arXiv:1305.0700] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    C. Vafa, Modular Invariance and Discrete Torsion on Orbifolds, Nucl. Phys. B 273 (1986) 592 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    M. Billó, B. Craps and F. Roose, Orbifold boundary states from Cardy’s condition, JHEP 01 (2001) 038 [hep-th/0011060] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    D. Gepner and E. Witten, String Theory on Group Manifolds, Nucl. Phys. B 278 (1986) 493 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    P. Di Francesco, P. Mathieu and D. Senechal, Conformal Field Theory, Graduate Texts in Contemporary Physics, Springer-Verlag, New York U.S.A. (1997).Google Scholar
  29. [29]
    R. Dijkgraaf and E. Witten, Topological Gauge Theories and Group Cohomology, Commun. Math. Phys. 129 (1990) 393 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    C.-r. Ahn and M.A. Walton, Spectra of Strings on Nonsimply Connected Group Manifolds, Phys. Lett. B 223 (1989) 343 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    B. Gato-Rivera and A.N. Schellekens, Complete classification of simple current modular invariants for (Z p)k, Commun. Math. Phys. 145 (1992) 85 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  32. [32]
    M.R. Gaberdiel, WZW models of general simple groups, Nucl. Phys. B 460 (1996) 181 [hep-th/9508105] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    N. Ishibashi, The Boundary and Crosscap States in Conformal Field Theories, Mod. Phys. Lett. A 4 (1989) 251 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    T. Onogi and N. Ishibashi, Conformal Field Theories on Surfaces With Boundaries and Crosscaps, Mod. Phys. Lett. A 4 (1989) 161 [Erratum ibid. A 4 (1989) 885] [INSPIRE].
  35. [35]
    J.M. Maldacena, G.W. Moore and N. Seiberg, D-brane instantons and k-theory charges, JHEP 11 (2001) 062 [hep-th/0108100] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    J. McGreevy, TASI 2015 Lectures on Quantum Matter (with a View Toward Holographic Duality), in Proceedings of Theoretical Advanced Study Institute in Elementary Particle Physics: New Frontiers in Fields and Strings (TASI 2015), Boulder U.S.A. (2015), pg. 215 [arXiv:1606.08953] [INSPIRE].
  37. [37]
    K. Duivenvoorden and T. Quella, Topological phases of spin chains, Phys. Rev. B 87 (2013) 125145 [arXiv:1206.2462] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    A. Roy and T. Quella, Chiral Haldane phases of SU(N) quantum spin chains, Phys. Rev. B 97 (2018) 155148 [arXiv:1512.05229] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    F. Pollmann, A.M. Turner, E. Berg and M. Oshikawa, Entanglement spectrum of a topological phase in one dimension, Phys. Rev. B 81 (2010) 064439.ADSCrossRefGoogle Scholar
  40. [40]
    K. Tanimoto and K. Totsuka, Symmetry-protected topological order in SU(N) Heisenberg magnets — quantum entanglement and non-local order parameters, arXiv:1508.07601 [INSPIRE].
  41. [41]
    J. Cardy and E. Tonni, Entanglement hamiltonians in two-dimensional conformal field theory, J. Stat. Mech. 1612 (2016) 123103 [arXiv:1608.01283] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  42. [42]
    V. Alba, P. Calabrese and E. Tonni, Entanglement spectrum degeneracy and the Cardy formula in 1 + 1 dimensional conformal field theories, J. Phys. A 51 (2018) 024001 [arXiv:1707.07532] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  43. [43]
    J.C. Bridgeman and D.J. Williamson, Anomalies and entanglement renormalization, Phys. Rev. B 96 (2017) 125104 [arXiv:1703.07782] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    S. Singh and G. Vidal, Symmetry protected entanglement renormalization, Phys. Rev. B 88 (2013) 121108 [arXiv:1303.6716] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    G. Evenbly and G. Vidal, Algorithms for Entanglement Renormalization: Boundaries, Impurities and Interfaces, J. Stat. Phys. 157 (2014) 931 [arXiv:1312.0303].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of Physics, Graduate School of ScienceOsaka UniversityToyonakaJapan
  2. 2.Department of PhysicsMcGill UniversityMontréalCanada

Personalised recommendations