Advertisement

Journal of High Energy Physics

, 2018:201 | Cite as

(2, 2) geometry from gauge theory

  • João CaldeiraEmail author
  • Travis Maxfield
  • Savdeep Sethi
Open Access
Regular Article - Theoretical Physics

Abstract

Using gauge theory, we describe how to construct generalized Kähler geometries with (2, 2) two-dimensional supersymmetry, which are analogues of familiar examples like projective spaces and Calabi-Yau manifolds. For special cases, T-dual descriptions can be found which are squashed Kähler spaces. We explore the vacuum structure of these gauge theories by studying the Coulomb branch, which usually encodes the quantum cohomology ring. Some models without Kähler dual descriptions possess unusual Coulomb branches. Specifically, there appear to be an infinite number of supersymmetric vacua.

Keywords

Flux compactifications Sigma Models Superstrings and Heterotic Strings Superstring Vacua 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S.J. Gates Jr., C.M. Hull and M. Roček, Twisted Multiplets and New Supersymmetric Nonlinear σ-models, Nucl. Phys. B 248 (1984) 157 [INSPIRE].
  2. [2]
    N. Hitchin, Generalized Calabi-Yau manifolds, Quart. J. Math. 54 (2003) 281 [math/0209099] [INSPIRE].
  3. [3]
    M. Gualtieri, Generalized Kähler Geometry, Commun. Math. Phys. 331 (2014) 297 [INSPIRE].
  4. [4]
    U. Lindström, M. Roček, R. von Unge and M. Zabzine, Generalized Kähler manifolds and off-shell supersymmetry, Commun. Math. Phys. 269 (2007) 833 [hep-th/0512164] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  5. [5]
    F. Bischoff, M. Gualtieri and M. Zabzine, Morita equivalence and the generalized Kähler potential, arXiv:1804.05412 [INSPIRE].
  6. [6]
    J. Halverson, C. Long and B. Sung, Algorithmic universality in F-theory compactifications, Phys. Rev. D 96 (2017) 126006 [arXiv:1706.02299] [INSPIRE].
  7. [7]
    W. Taylor and Y.-N. Wang, Scanning the skeleton of the 4D F-theory landscape, JHEP 01 (2018) 111 [arXiv:1710.11235] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    W. Taylor and Y.-N. Wang, The F-theory geometry with most flux vacua, JHEP 12 (2015) 164 [arXiv:1511.03209] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  9. [9]
    L.B. Anderson, X. Gao, J. Gray and S.-J. Lee, Multiple Fibrations in Calabi-Yau Geometry and String Dualities, JHEP 10 (2016) 105 [arXiv:1608.07555] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    K. Dasgupta, G. Rajesh and S. Sethi, M-theory, orientifolds and G-flux, JHEP 08 (1999) 023 [hep-th/9908088] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    E. Witten, Phases of N = 2 theories in two-dimensions, Nucl. Phys. B 403 (1993) 159 [hep-th/9301042] [INSPIRE].
  12. [12]
    A. Adams, M. Ernebjerg and J.M. Lapan, Linear models for flux vacua, Adv. Theor. Math. Phys. 12 (2008) 817 [hep-th/0611084] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    A. Adams and D. Guarrera, Heterotic Flux Vacua from Hybrid Linear Models, arXiv:0902.4440 [INSPIRE].
  14. [14]
    A. Adams, E. Dyer and J. Lee, GLSMs for non-Kähler Geometries, JHEP 01 (2013) 044 [arXiv:1206.5815] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  15. [15]
    C. Quigley and S. Sethi, Linear σ-models with Torsion, JHEP 11 (2011) 034 [arXiv:1107.0714] [INSPIRE].
  16. [16]
    I.V. Melnikov, C. Quigley, S. Sethi and M. Stern, Target Spaces from Chiral Gauge Theories, JHEP 02 (2013) 111 [arXiv:1212.1212] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    C. Quigley, S. Sethi and M. Stern, Novel Branches of (0, 2) Theories, JHEP 09 (2012) 064 [arXiv:1206.3228] [INSPIRE].
  18. [18]
    K. Hori and C. Vafa, Mirror symmetry, hep-th/0002222 [INSPIRE].
  19. [19]
    A. Adams, A. Basu and S. Sethi, (0, 2) duality, Adv. Theor. Math. Phys. 7 (2003) 865 [hep-th/0309226] [INSPIRE].
  20. [20]
    I. Melnikov, S. Sethi and E. Sharpe, Recent Developments in (0, 2) Mirror Symmetry, SIGMA 8 (2012) 068 [arXiv:1209.1134] [INSPIRE].
  21. [21]
    K. Hori and A. Kapustin, World sheet descriptions of wrapped NS five-branes, JHEP 11 (2002) 038 [hep-th/0203147] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    D. Tong, NS5-branes, T-duality and world sheet instantons, JHEP 07 (2002) 013 [hep-th/0204186] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    A. Giveon, D. Kutasov and O. Pelc, Holography for noncritical superstrings, JHEP 10 (1999) 035 [hep-th/9907178] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  24. [24]
    A. Giveon and D. Kutasov, Little string theory in a double scaling limit, JHEP 10 (1999) 034 [hep-th/9909110] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    V.A. Fateev, A.B. Zamolodchikov and A.B. Zamolodchikov, unpublished.Google Scholar
  26. [26]
    H. Ooguri and C. Vafa, Two-dimensional black hole and singularities of CY manifolds, Nucl. Phys. B 463 (1996) 55 [hep-th/9511164] [INSPIRE].
  27. [27]
    K. Hori and A. Kapustin, Duality of the fermionic 2d black hole and N = 2 Liouville theory as mirror symmetry, JHEP 08 (2001) 045 [hep-th/0104202] [INSPIRE].
  28. [28]
    M. Bertolini, I.V. Melnikov and M.R. Plesser, Hybrid conformal field theories, JHEP 05 (2014) 043 [arXiv:1307.7063] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    Z. Chen, T. Pantev and E. Sharpe, Landau-Ginzburg models for certain fiber products with curves, arXiv:1806.01283 [INSPIRE].
  30. [30]
    A. Corti, M. Haskins, J. Nordström and T. Pacini, G 2 -manifolds and associative submanifolds via semi-Fano 3-folds, Duke Math. J. 164 (2015) 1971 [arXiv:1207.4470] [INSPIRE].
  31. [31]
    A.P. Braun and S. Schäfer-Nameki, Compact, Singular G 2 -Holonomy Manifolds and M/Heterotic/F-Theory Duality, JHEP 04 (2018) 126 [arXiv:1708.07215] [INSPIRE].
  32. [32]
    M.-A. Fiset, Superconformal algebras for twisted connected sums and G 2 mirror symmetry, arXiv:1809.06376 [INSPIRE].
  33. [33]
    D.R. Morrison and M.R. Plesser, Towards mirror symmetry as duality for two-dimensional abelian gauge theories, Nucl. Phys. Proc. Suppl. 46 (1996) 177 [hep-th/9508107] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    E. Witten, On the Landau-Ginzburg description of N = 2 minimal models, Int. J. Mod. Phys. A 9 (1994) 4783 [hep-th/9304026] [INSPIRE].
  35. [35]
    D.R. Morrison and M.R. Plesser, Summing the instantons: Quantum cohomology and mirror symmetry in toric varieties, Nucl. Phys. B 440 (1995) 279 [hep-th/9412236] [INSPIRE].
  36. [36]
    I.V. Melnikov and M.R. Plesser, The Coulomb branch in gauged linear σ-models, JHEP 06 (2005) 013 [hep-th/0501238] [INSPIRE].
  37. [37]
    R.K. Gupta and S. Murthy, Squashed toric σ-models and mock modular forms, arXiv:1705.00649 [INSPIRE].
  38. [38]
    R. Kumar Gupta, S. Murthy and C. Nazaroglu, Squashed Toric Manifolds and Higher Depth Mock Modular Forms, arXiv:1808.00012 [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Enrico Fermi Institute & Kadanoff Center for Theoretical PhysicsUniversity of ChicagoChicagoU.S.A.
  2. 2.Center for Geometry and Theoretical PhysicsDuke UniversityDurhamU.S.A.

Personalised recommendations