Advertisement

Journal of High Energy Physics

, 2018:199 | Cite as

A high quality composite axion

  • Benjamin LillardEmail author
  • Tim M. P. Tait
Open Access
Regular Article - Theoretical Physics

Abstract

The strong CP problem is a compelling motivation for physics beyond the Standard Model. The most popular solutions invoke a global U(1)PQ symmetry, but are challenged by quantum gravitational corrections which are thought to be incompatible with global symmetries, arguing that realistic theories contain additional structure. We explore a construction in which the U(1)PQ symmetry is protected to arbitrary order by virtue of a supersymmetric, confining SU(N)L × SU(N) × SU(N)R × U(1)X product gauge group, achieving \( \left|\overline{\uptheta}\right| \) < 10−11 for an SU(5) model with fa ≲ 3 × 1011 GeV. This construction leads to low energy predictions such as a U(1)X gauge symmetry, and for X = BL engineers a naturally \( \mathcal{O} \)(TeV) value for the μ parameter of the MSSM.

Keywords

Confinement Global Symmetries Spontaneous Symmetry Breaking Supersymmetric Gauge Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    C.A. Baker et al., An improved experimental limit on the electric dipole moment of the neutron, Phys. Rev. Lett. 97 (2006) 131801 [hep-ex/0602020] [INSPIRE].
  2. [2]
    J.M. Pendlebury et al., Revised experimental upper limit on the electric dipole moment of the neutron, Phys. Rev. D 92 (2015) 092003 [arXiv:1509.04411] [INSPIRE].ADSGoogle Scholar
  3. [3]
    R.D. Peccei and H.R. Quinn, Constraints imposed by CP conservation in the presence of instantons, Phys. Rev. D 16 (1977) 1791 [INSPIRE].ADSGoogle Scholar
  4. [4]
    M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Can confinement ensure natural CP invariance of strong interactions?, Nucl. Phys. B 166 (1980) 493 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    J.E. Kim and G. Carosi, Axions and the strong CP problem, Rev. Mod. Phys. 82 (2010) 557 [arXiv:0807.3125] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    P. Di Vecchia and G. Veneziano, Chiral dynamics in the large N limit, Nucl. Phys. B 171 (1980) 253 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    J.E. Kim, Weak interaction singlet and strong CP invariance, Phys. Rev. Lett. 43 (1979) 103 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    A.R. Zhitnitsky, On possible suppression of the axion hadron interactions (in Russian), Sov. J. Nucl. Phys. 31 (1980) 260 [Yad. Fiz. 31 (1980) 497] [INSPIRE].
  9. [9]
    M. Dine, W. Fischler and M. Srednicki, A simple solution to the strong CP problem with a harmless axion, Phys. Lett. B 104 (1981) 199 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    J. Preskill, M.B. Wise and F. Wilczek, Cosmology of the invisible axion, Phys. Lett. B 120 (1983) 127 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    L.F. Abbott and P. Sikivie, A cosmological bound on the invisible axion, Phys. Lett. B 120 (1983) 133 [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    M. Dine and W. Fischler, The not so harmless axion, Phys. Lett. B 120 (1983) 137 [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    S.B. Giddings and A. Strominger, Axion induced topology change in quantum gravity and string theory, Nucl. Phys. B 306 (1988) 890 [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    M. Kamionkowski and J. March-Russell, Planck scale physics and the Peccei-Quinn mechanism, Phys. Lett. B 282 (1992) 137 [hep-th/9202003] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    S.M. Barr and D. Seckel, Planck scale corrections to axion models, Phys. Rev. D 46 (1992) 539 [INSPIRE].ADSGoogle Scholar
  16. [16]
    R. Kallosh, A.D. Linde, D.A. Linde and L. Susskind, Gravity and global symmetries, Phys. Rev. D 52 (1995) 912 [hep-th/9502069] [INSPIRE].ADSMathSciNetGoogle Scholar
  17. [17]
    L.F. Abbott and M.B. Wise, Wormholes and global symmetries, Nucl. Phys. B 325 (1989) 687 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    S.R. Coleman and K.-M. Lee, Wormholes made without massless matter fields, Nucl. Phys. B 329 (1990) 387 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    E.J. Chun and A. Lukas, Discrete gauge symmetries in axionic extensions of the SSM, Phys. Lett. B 297 (1992) 298 [hep-ph/9209208] [INSPIRE].
  20. [20]
    K. Harigaya, M. Ibe, K. Schmitz and T.T. Yanagida, Peccei-Quinn symmetry from a gauged discrete R symmetry, Phys. Rev. D 88 (2013) 075022 [arXiv:1308.1227] [INSPIRE].ADSGoogle Scholar
  21. [21]
    K. Harigaya, M. Ibe, K. Schmitz and T.T. Yanagida, Peccei-Quinn symmetry from dynamical supersymmetry breaking, Phys. Rev. D 92 (2015) 075003 [arXiv:1505.07388] [INSPIRE].ADSGoogle Scholar
  22. [22]
    L. Randall, Composite axion models and Planck scale physics, Phys. Lett. B 284 (1992) 77 [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    L. Di Luzio, E. Nardi and L. Ubaldi, Accidental Peccei-Quinn symmetry protected to arbitrary order, Phys. Rev. Lett. 119 (2017) 011801 [arXiv:1704.01122] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    B. Lillard and T.M.P. Tait, A composite axion from a supersymmetric product group, JHEP 11 (2017) 005 [arXiv:1707.04261] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    H.-C. Cheng and D.E. Kaplan, Axions and a gauged Peccei-Quinn symmetry, hep-ph/0103346 [INSPIRE].
  26. [26]
    H. Fukuda, M. Ibe, M. Suzuki and T.T. Yanagida, A “gauged” U(1) Peccei-Quinn symmetry, Phys. Lett. B 771 (2017) 327 [arXiv:1703.01112] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  27. [27]
    M. Duerr, K. Schmidt-Hoberg and J. Unwin, Protecting the axion with local baryon number, Phys. Lett. B 780 (2018) 553 [arXiv:1712.01841] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  28. [28]
    N. Seiberg, Exact results on the space of vacua of four-dimensional SUSY gauge theories, Phys. Rev. D 49 (1994) 6857 [hep-th/9402044] [INSPIRE].ADSMathSciNetGoogle Scholar
  29. [29]
    K.A. Intriligator and N. Seiberg, Phases of N = 1 supersymmetric gauge theories in four-dimensions, Nucl. Phys. B 431 (1994) 551 [hep-th/9408155] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    S. Chang and H. Georgi, Quantum modified mooses, Nucl. Phys. B 672 (2003) 101 [hep-th/0209038] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    A. Font, L.E. Ibáñez and F. Quevedo, Does proton stability imply the existence of an extra Z 0 ?, Phys. Lett. B 228 (1989) 79 [INSPIRE].ADSGoogle Scholar
  32. [32]
    M. Ciuchini, G. Degrassi, P. Gambino and G.F. Giudice, Next-to-leading QCD corrections to BX s γ in supersymmetry, Nucl. Phys. B 534 (1998) 3 [hep-ph/9806308] [INSPIRE].
  33. [33]
    M. Dine, A.E. Nelson and Y. Shirman, Low-energy dynamical supersymmetry breaking simplified, Phys. Rev. D 51 (1995) 1362 [hep-ph/9408384] [INSPIRE].
  34. [34]
    M. Dine, A.E. Nelson, Y. Nir and Y. Shirman, New tools for low-energy dynamical supersymmetry breaking, Phys. Rev. D 53 (1996) 2658 [hep-ph/9507378] [INSPIRE].
  35. [35]
    G.F. Giudice and R. Rattazzi, Theories with gauge mediated supersymmetry breaking, Phys. Rept. 322 (1999) 419 [hep-ph/9801271] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of CaliforniaIrvineU.S.A.

Personalised recommendations