Advertisement

Journal of High Energy Physics

, 2018:195 | Cite as

Next-to-minimal dark matter at the LHC

  • A. Bharucha
  • F. Brümmer
  • N. DesaiEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

We examine the collider signatures of a WIMP dark matter scenario comprising a singlet fermion and an SU(2) n-plet fermion, with a focus on n = 3 and n = 5. The singlet and n-plet masses are of the order of the electroweak scale. The n-plet contains new charged particles which will be copiously pair-produced at the LHC. Small mixing angles and near-degenerate masses, both of which feature naturally in these models, give rise to long-lived particles and their characteristic collider signatures. In particular, the n = 5 model can be constrained by displaced lepton searches independently of the mixing angle, generically ruling out 5-plet masses below about 280 GeV. For small mixing angles, we show that there is a parameter range for which the model reproduces the observed thermal relic density but is severely constrained by disappearing track searches in both the n = 3 and the n = 5 cases. The n = 3 model is further constrained by soft di-lepton searches irrespective of whether any of the new particles are long-lived.

Keywords

Beyond Standard Model Effective Field Theories 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    M. Cirelli, N. Fornengo and A. Strumia, Minimal dark matter, Nucl. Phys. B 753 (2006) 178 [hep-ph/0512090] [INSPIRE].
  2. [2]
    M. Cirelli and A. Strumia, Minimal dark matter: model and results, New J. Phys. 11 (2009) 105005 [arXiv:0903.3381] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    T. Golling et al., Physics at a 100 TeV pp collider: beyond the standard model phenomena, CERN Yellow Report (2017) 441 [arXiv:1606.00947] [INSPIRE].
  4. [4]
    M. Cirelli et al., Gamma ray tests of minimal dark matter, JCAP 10 (2015) 026 [arXiv:1507.05519] [INSPIRE].
  5. [5]
    A. Bharucha, F. Brümmer and R. Ruffault, Well-tempered n-plet dark matter, JHEP 09 (2017) 160 [arXiv:1703.00370] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    L. Di Luzio, R. Gröber, J.F. Kamenik and M. Nardecchia, Accidental matter at the LHC, JHEP 07 (2015) 074 [arXiv:1504.00359] [INSPIRE].CrossRefGoogle Scholar
  7. [7]
    B. Ostdiek, Constraining the minimal dark matter fiveplet with LHC searches, Phys. Rev. D 92 (2015) 055008 [arXiv:1506.03445] [INSPIRE].
  8. [8]
    L. Lopez Honorez, M.H.G. Tytgat, P. Tziveloglou and B. Zaldivar, On minimal dark matter coupled to the Higgs, JHEP 04 (2018) 011 [arXiv:1711.08619] [INSPIRE].CrossRefzbMATHGoogle Scholar
  9. [9]
    S. Kumar Agarwalla, K. Ghosh and A. Patra, Sub-TeV quintuplet minimal dark matter with left-right symmetry, JHEP 05 (2018) 123 [arXiv:1803.01670] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    H. Baer et al., Exploring the BWCA (Bino-Wino Co-Annihilation) scenario for neutralino dark matter, JHEP 12 (2005) 011 [hep-ph/0511034] [INSPIRE].
  11. [11]
    N. Arkani-Hamed, A. Delgado and G.F. Giudice, The well-tempered neutralino, Nucl. Phys. B 741 (2006) 108 [hep-ph/0601041] [INSPIRE].
  12. [12]
    M. Ibe, A. Kamada and S. Matsumoto, Mixed (cold+warm) dark matter in the bino-wino coannihilation scenario, Phys. Rev. D 89 (2014) 123506 [arXiv:1311.2162] [INSPIRE].
  13. [13]
    N. Nagata, H. Otono and S. Shirai, Probing bino-wino coannihilation at the LHC, JHEP 10 (2015) 086 [arXiv:1506.08206] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    K. Rolbiecki and K. Sakurai, Long-lived bino and wino in supersymmetry with heavy scalars and higgsinos, JHEP 11 (2015) 091 [arXiv:1506.08799] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    P. Chardonnet, P. Salati and P. Fayet, Heavy triplet neutrinos as a new dark matter option, Nucl. Phys. B 394 (1993) 35 [INSPIRE].
  16. [16]
    G. Brooijmans et al., Les Houches 2017: physics at TeV colliders new physics working group report, arXiv:1803.10379 [INSPIRE].
  17. [17]
    K. Griest and D. Seckel, Three exceptions in the calculation of relic abundances, Phys. Rev. D 43 (1991) 3191 [INSPIRE].
  18. [18]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
  19. [19]
    M. Ibe, S. Matsumoto and R. Sato, Mass splitting between charged and neutral winos at two-loop level, Phys. Lett. B 721 (2013) 252 [arXiv:1212.5989] [INSPIRE].
  20. [20]
    R.T. D’Agnolo, D. Pappadopulo and J.T. Ruderman, Fourth exception in the calculation of relic abundances, Phys. Rev. Lett. 119 (2017) 061102 [arXiv:1705.08450] [INSPIRE].
  21. [21]
    M. Garny, J. Heisig, B. Lülf and S. Vogl, Coannihilation without chemical equilibrium, Phys. Rev. D 96 (2017) 103521 [arXiv:1705.09292] [INSPIRE].
  22. [22]
    CMS collaboration, Search for displaced supersymmetry in events with an electron and a muon with large impact parameters, Phys. Rev. Lett. 114 (2015) 061801 [arXiv:1409.4789] [INSPIRE].
  23. [23]
    CMS collaboration, Search for displaced leptons in the e-μ channel, CMS-PAS-EXO-16-022 (2016).
  24. [24]
    ALEPH, DELPHI, L3 and OPAL experiments, Combined LEP chargino results, up to 208 GeV for low DM, LEPSUSYWG/02-04.1.
  25. [25]
    ALEPH, DELPHI, L3 and OPAL experiments, Combined LEP chargino results, up to 208 GeV for large m 0, LEPSUSYWG/01-03.1.
  26. [26]
    CMS collaboration, Search for heavy stable charged particles with 12.9 fb −1 of 2016 data, CMS-PAS-EXO-16-036 (2016).
  27. [27]
    CMS collaboration, Search for new physics in events with two low momentum opposite-sign leptons and missing transverse energy at \( \sqrt{s}=13 \) TeV, CMS-PAS-SUS-16-048 (2016).
  28. [28]
    ATLAS collaboration, Search for long-lived charginos based on a disappearing-track signature in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, JHEP 06 (2018) 022 [arXiv:1712.02118] [INSPIRE].
  29. [29]
    ATLAS collaboration, Search for charginos nearly mass degenerate with the lightest neutralino based on a disappearing-track signature in pp collisions at \( \sqrt{s} = 8 \) TeV with the ATLAS detector, Phys. Rev. D 88 (2013) 112006 [arXiv:1310.3675] [INSPIRE].
  30. [30]
    CMS collaboration, Search for disappearing tracks in proton-proton collisions at \( \sqrt{s} = 8 \) TeV, JHEP 01 (2015) 096 [arXiv:1411.6006] [INSPIRE].
  31. [31]
    T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].
  32. [32]
    A. Alloul et al., FeynRules 2.0 — A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
  33. [33]
    J. Alwall et al., MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  34. [34]
    C. Degrande et al., UFO — The Universal FeynRules Output, Comput. Phys. Commun. 183 (2012) 1201 [arXiv:1108.2040] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Aix Marseille Univ, Université de Toulon, CNRS, CPT, Marseille, FranceMarseilleFrance
  2. 2.LUPM, UMR5299, Université de Montpellier and CNRSMontpellierFrance

Personalised recommendations