Journal of High Energy Physics

, 2018:180 | Cite as

Cosmological perturbations in generalised dark Lagrangians

  • James EdholmEmail author
  • Jonathan Pearson
Open Access
Regular Article - Theoretical Physics


We describe a new method to parameterise dark energy theories including massive gravity, elastic dark energy and tensor-metric theories. We first examine the existing framework which describes any second order Lagrangian which depends on the variation of the metric and find new constraints on the parameters. We extend the method to Lorentz violating theories which depend on the variation of the time and spatial parts of the metric separately. We show how this can describe massive gravity and elastic dark energy, while ruling out the whole class of theories where the Lagrangian depends only on the variation of the time part of the metric.

We further generalise our method to tensor-metric theories, both with and without splitting the metric into time and spatial parts. Our method extends existing physics by providing a mechanism to easily evaluate large classes of dark energy theories.


Classical Theories of Gravity Space-Time Symmetries Spacetime Singularities 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    Supernova Cosmology Project collaboration, S. Perlmutter et al., Measurements of Ω and Λ from 42 high redshift supernovae, Astrophys. J. 517 (1999) 565 [astro-ph/9812133] [INSPIRE].
  2. [2]
    Supernova Search Team collaboration, A.G. Riess et al., Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J. 116 (1998) 1009 [astro-ph/9805201] [INSPIRE].
  3. [3]
    C. Heymans et al., CFHTLenS: the Canada-France-Hawaii telescope lensing survey, Mon. Not. Roy. Astron. Soc. 427 (2012) 146 [arXiv:1210.0032] [INSPIRE].
  4. [4]
    Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XV. CMB power spectra and likelihood, Astron. Astrophys. 571 (2014) A15 [arXiv:1303.5075] [INSPIRE].
  5. [5]
    Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XVII. Gravitational lensing by large-scale structure, Astron. Astrophys. 571 (2014) A17 [arXiv:1303.5077] [INSPIRE].
  6. [6]
    DES collaboration, T. Abbott et al., The dark energy survey, astro-ph/0510346 [INSPIRE].
  7. [7]
    LSST Dark Energy Science collaboration, A. Abate et al., Large Synoptic Survey Telescope: dark energy science collaboration, arXiv:1211.0310 [INSPIRE].
  8. [8]
    R.A. Battye, F. Pace and D. Trinh, Gravitational wave constraints on dark sector models, Phys. Rev. D 98 (2018) 023504 [arXiv:1802.09447] [INSPIRE].
  9. [9]
    T. Clifton, P.G. Ferreira, A. Padilla and C. Skordis, Modified gravity and cosmology, Phys. Rept. 513 (2012) 1 [arXiv:1106.2476] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    J.A. Pearson, Effective field theory for perturbations in dark energy and modified gravity, arXiv:1205.3611 [INSPIRE].
  11. [11]
    J. Bloomfield and J. Pearson, Simple implementation of general dark energy models, JCAP 03 (2014) 017 [arXiv:1310.6033] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    R.A. Battye and J.A. Pearson, Massive gravity, the elasticity of space-time and perturbations in the dark sector, Phys. Rev. D 88 (2013) 084004 [arXiv:1301.5042] [INSPIRE].
  13. [13]
    R.A. Battye and J.A. Pearson, Effective action approach to cosmological perturbations in dark energy and modified gravity, JCAP 07 (2012) 019 [arXiv:1203.0398] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    R.A. Battye and J.A. Pearson, Computing model independent perturbations in dark energy and modified gravity, JCAP 03 (2014) 051 [arXiv:1311.6737] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    C. Skordis, Consistent cosmological modifications to the Einstein equations, Phys. Rev. D 79 (2009) 123527 [arXiv:0806.1238] [INSPIRE].
  16. [16]
    T. Baker, P.G. Ferreira, C. Skordis and J. Zuntz, Towards a fully consistent parameterization of modified gravity, Phys. Rev. D 84 (2011) 124018 [arXiv:1107.0491] [INSPIRE].
  17. [17]
    T. Baker, P.G. Ferreira and C. Skordis, The parameterized post-Friedmann framework for theories of modified gravity: concepts, formalism and examples, Phys. Rev. D 87 (2013) 024015 [arXiv:1209.2117] [INSPIRE].
  18. [18]
    Virgo and LIGO Scientific collaborations, B. Abbott et al., GW170817: observation of gravitational waves from a binary neutron star inspiral, Phys. Rev. Lett. 119 (2017) 161101 [arXiv:1710.05832] [INSPIRE].
  19. [19]
    C. de Rham and S. Melville, Gravitational rainbows: LIGO and dark energy at its cutoff, arXiv:1806.09417 [INSPIRE].
  20. [20]
    J.A. Pearson, Material models of dark energy, Annalen Phys. 526 (2014) 318 [arXiv:1403.1213] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    B. Carter, Interaction of gravitational waves with an elastic solid medium, in Les Houches Summer School on Gravitational Radiation, Les Houches, France, 2-21 June 1982 [gr-qc/0102113] [INSPIRE].
  22. [22]
    B. Carter, Speed of sound in a high-pressure general-relativistic solid, Phys. Rev. D 7 (1973) 1590 [INSPIRE].
  23. [23]
    B. Carter, Rheometric structure theory, convective differentiation and continuum electrodynamics, Proc. Roy. Soc. Lond. A 372 (1980) 169.Google Scholar
  24. [24]
    J.L. Friedman and B.F. Schutz, On the stability of relativistic systems, Astrophys. J. 200 (1975) 204 [Erratum ibid. 222 (1978) 1119].Google Scholar
  25. [25]
    B. Carter and H. Quintana, Foundations of general relativistic high-pressure elasticity theory, Proc. Roy. Soc. Lond. A 331 (1972) 57.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    O.J. Tattersall, M. Lagos and P.G. Ferreira, Covariant approach to parametrized cosmological perturbations, Phys. Rev. D 96 (2017) 064011 [arXiv:1706.10091] [INSPIRE].
  27. [27]
    R.A. Battye, A. Moss and J.A. Pearson, Constraining dark sector perturbations I: cosmic shear and CMB lensing, JCAP 04 (2015) 048 [arXiv:1409.4650] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
  29. [29]
    R.A. Battye and A. Moss, Cosmological perturbations in elastic dark energy models, Phys. Rev. D 76 (2007) 023005 [astro-ph/0703744] [INSPIRE].
  30. [30]
    W. Hu, U. Seljak, M.J. White and M. Zaldarriaga, A complete treatment of CMB anisotropies in a FRW universe, Phys. Rev. D 57 (1998) 3290 [astro-ph/9709066] [INSPIRE].
  31. [31]
    C. de Rham, G. Gabadadze and A.J. Tolley, Resummation of massive gravity, Phys. Rev. Lett. 106 (2011) 231101 [arXiv:1011.1232] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    A. Schmidt-May and M. von Strauss, Recent developments in bimetric theory, J. Phys. A 49 (2016) 183001 [arXiv:1512.00021] [INSPIRE].
  33. [33]
    M. Lagos and P.G. Ferreira, A general theory of linear cosmological perturbations: bimetric theories, JCAP 01 (2017) 047 [arXiv:1610.00553] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    J. Gleyzes, D. Langlois, F. Piazza and F. Vernizzi, Healthy theories beyond Horndeski, Phys. Rev. Lett. 114 (2015) 211101 [arXiv:1404.6495] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    J. Ben Achour, M. Crisostomi, K. Koyama, D. Langlois, K. Noui and G. Tasinato, Degenerate higher order scalar-tensor theories beyond Horndeski up to cubic order, JHEP 12 (2016) 100 [arXiv:1608.08135] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Consortium for Fundamental Physics, Physics DepartmentLancaster UniversityLancasterU.K.
  2. 2.Centre for Particle Theory, Department of Mathematical SciencesDurham UniversityDurhamU.K.

Personalised recommendations