Advertisement

Journal of High Energy Physics

, 2018:179 | Cite as

Probing axial quark generalized parton distributions through exclusive photoproduction of a γπ± pair with a large invariant mass

  • G. Duplančić
  • K. Passek-Kumerički
  • B. Pire
  • L. Szymanowski
  • S. Wallon
Open Access
Regular Article - Theoretical Physics
  • 20 Downloads

Abstract

Exclusive photoproduction of a γπ± pair in the kinematics where the pair has a large invariant mass and the final nucleon has a small transverse momentum is described in the collinear factorization framework. The scattering amplitude is calculated at leading order in αs and the differential cross sections for the process are estimated in the kinematics of the JLab 12-GeV experiments. The order of magnitude of the predicted cross-sections seems sufficient for a dedicated experiment to be performed. The process turns out to be very sensitive to the axial generalized parton distribution combination \( {\tilde{H}}_u-{\tilde{H}}_d \).

Keywords

QCD Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    K. Goeke, M.V. Polyakov and M. Vanderhaeghen, Hard exclusive reactions and the structure of hadrons, Prog. Part. Nucl. Phys. 47 (2001) 401 [hep-ph/0106012] [INSPIRE].
  2. [2]
    M. Diehl, Generalized parton distributions, Phys. Rept. 388 (2003) 41 [hep-ph/0307382] [INSPIRE].
  3. [3]
    A.V. Belitsky and A.V. Radyushkin, Unraveling hadron structure with generalized parton distributions, Phys. Rept. 418 (2005) 1 [hep-ph/0504030] [INSPIRE].
  4. [4]
    S. Boffi and B. Pasquini, Generalized parton distributions and the structure of the nucleon, Riv. Nuovo Cim. 30 (2007) 387 [arXiv:0711.2625] [INSPIRE].ADSGoogle Scholar
  5. [5]
    V.D. Burkert and M. Diehl, Generalized parton distributions, in Electromagnetic interactions and hadronic structure, F. Close et al. eds., Cambridge University Press, Cambridge U.K. (2007).Google Scholar
  6. [6]
    M. Guidal, Generalized parton distributions and deep virtual compton scattering, Prog. Part. Nucl. Phys. 61 (2008) 89 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    D.Yu. Ivanov, B. Pire, L. Szymanowski and O.V. Teryaev, Probing chiral odd GPDs in diffractive electroproduction of two vector mesons, Phys. Lett. B 550 (2002) 65 [hep-ph/0209300] [INSPIRE].
  8. [8]
    R. Enberg, B. Pire and L. Szymanowski, Transversity GPD in photo- and electroproduction of two vector mesons, Eur. Phys. J. C 47 (2006) 87 [hep-ph/0601138] [INSPIRE].
  9. [9]
    S. Kumano, M. Strikman and K. Sudoh, Novel two-to-three hard hadronic processes and possible studies of generalized parton distributions at hadron facilities, Phys. Rev. D 80 (2009) 074003 [arXiv:0905.1453] [INSPIRE].ADSGoogle Scholar
  10. [10]
    M. El Beiyad et al., Photoproduction of a pi rhoT pair with a large invariant mass and transversity generalized parton distribution, Phys. Lett. B 688 (2010) 154 [arXiv:1001.4491] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    A.B. Larionov and M. Strikman, Exploring QCD dynamics in medium energy γA semiexclusive collisions, Phys. Lett. B 760 (2016) 753 [arXiv:1606.00761] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    A. Pedrak, B. Pire, L. Szymanowski and J. Wagner, Hard photoproduction of a diphoton with a large invariant mass, Phys. Rev. D 96 (2017) 074008 [arXiv:1708.01043] [INSPIRE].ADSGoogle Scholar
  13. [13]
    R. Boussarie, B. Pire, L. Szymanowski and S. Wallon, Exclusive photoproduction of a γρ pair with a large invariant mass, JHEP 02 (2017) 054 [Erratum ibid. 1810 (2018) 029] [arXiv:1609.03830] [INSPIRE].
  14. [14]
    G.R. Farrar, G.F. Sterman and H.-y. Zhang, Absence of Sudakov factors in large angle photoproduction and compton scattering, Phys. Rev. Lett. 62 (1989) 2229 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    G.P. Lepage and S.J. Brodsky, Exclusive processes in perturbative quantum chromodynamics, Phys. Rev. D 22 (1980) 2157 [INSPIRE].ADSGoogle Scholar
  16. [16]
    J.C. Collins, L. Frankfurt and M. Strikman, Factorization for hard exclusive electroproduction of mesons in QCD, Phys. Rev. D 56 (1997) 2982 [hep-ph/9611433] [INSPIRE].
  17. [17]
    D. Müller et al., Wave functions, evolution equations and evolution kernels from light ray operators of QCD, Fortsch. Phys. 42 (1994) 101 [hep-ph/9812448] [INSPIRE].
  18. [18]
    E.R. Berger, M. Diehl and B. Pire, Time - like Compton scattering: Exclusive photoproduction of lepton pairs, Eur. Phys. J. C 23 (2002) 675 [hep-ph/0110062] [INSPIRE].
  19. [19]
    B. Pire, L. Szymanowski and J. Wagner, NLO corrections to timelike, spacelike and double deeply virtual Compton scattering, Phys. Rev. D 83 (2011) 034009 [arXiv:1101.0555] [INSPIRE].ADSGoogle Scholar
  20. [20]
    P. Ball, Theoretical update of pseudoscalar meson distribution amplitudes of higher twist: the nonsinglet case, JHEP 01 (1999) 010 [hep-ph/9812375] [INSPIRE].
  21. [21]
    A.V. Radyushkin, Double distributions and evolution equations, Phys. Rev. D 59 (1999) 014030 [hep-ph/9805342] [INSPIRE].
  22. [22]
    M. Glück, E. Reya and A. Vogt, Dynamical parton distributions revisited, Eur. Phys. J. C 5 (1998) 461 [hep-ph/9806404] [INSPIRE].
  23. [23]
    M. Gluck, E. Reya, M. Stratmann and W. Vogelsang, Models for the polarized parton distributions of the nucleon, Phys. Rev. D 63 (2001) 094005 [hep-ph/0011215] [INSPIRE].
  24. [24]
    D. de Florian, R. Sassot, M. Stratmann and W. Vogelsang, Extraction of spin-dependent parton densities and their uncertainties, Phys. Rev. D 80 (2009) 034030 [arXiv:0904.3821] [INSPIRE].ADSGoogle Scholar
  25. [25]
    NNPDF collaboration, E.R. Nocera et al., A first unbiased global determination of polarized PDFs and their uncertainties, Nucl. Phys. B 887 (2014) 276 [arXiv:1406.5539] [INSPIRE].
  26. [26]
    I.V. Anikin, B. Pire and O.V. Teryaev, On the gauge invariance of the DVCS amplitude, Phys. Rev. D 62 (2000) 071501 [hep-ph/0003203] [INSPIRE].
  27. [27]
    V.M. Braun, A.N. Manashov and B. Pirnay, Finite-t and target mass corrections to deeply virtual Compton scattering, Phys. Rev. Lett. 109 (2012) 242001 [arXiv:1209.2559] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    G.R. Farrar and D.R. Jackson, The pion form-factor, Phys. Rev. Lett. 43 (1979) 246 [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    G.P. Lepage and S.J. Brodsky, Exclusive processes in quantum chromodynamics: evolution equations for hadronic wave functions and the form-factors of mesons, Phys. Lett. 87B (1979) 359 [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    A.V. Efremov and A.V. Radyushkin, Factorization and asymptotical behavior of pion form-factor in QCD, Phys. Lett. 94B (1980) 245 [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    L. Mankiewicz, G. Piller and T. Weigl, Hard leptoproduction of charged vector mesons, Phys. Rev. D 59 (1999) 017501 [hep-ph/9712508] [INSPIRE].
  32. [32]
    P. Kessler, The Weizsacker-Williams method and similar approximation methods in quantum electrodynamics, Acta Phys. Austriaca 41 (1975) 141 [INSPIRE].Google Scholar
  33. [33]
    S. Frixione, M.L. Mangano, P. Nason and G. Ridolfi, Improving the Weizsacker-Williams approximation in electron-proton collisions, Phys. Lett. B 319 (1993) 339 [hep-ph/9310350] [INSPIRE].
  34. [34]
    M. Fontannaz, Electroproduction cross section of large-E-perpendicular hadrons at NLO and virtual photon structure function, Eur. Phys. J. C 38 (2004) 297 [hep-ph/0410021] [INSPIRE].
  35. [35]
    C. Alexandrou et al., Nucleon spin and momentum decomposition using lattice QCD simulations, Phys. Rev. Lett. 119 (2017) 142002 [arXiv:1706.02973] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    B. Berthou et al., PARTONS: PARtonic Tomography Of Nucleon Software, Eur. Phys. J. C 78 (2018) 478 [arXiv:1512.06174] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    B. Nižić, Beyond leading order perturbative QCD corrections to γγM + M (M = π, K), Phys. Rev. D 35 (1987) 80 [INSPIRE].ADSGoogle Scholar
  38. [38]
    G. Duplančić and B. Nižić, NLO perturbative QCD predictions for gamma γM + M (M = π, K), Phys. Rev. Lett. 97 (2006) 142003 [hep-ph/0607069] [INSPIRE].
  39. [39]
    H. Moutarde et al., Timelike and spacelike deeply virtual Compton scattering at next-to-leading order, Phys. Rev. D 87 (2013) 054029 [arXiv:1301.3819] [INSPIRE].ADSGoogle Scholar
  40. [40]
    LHC Forward Physics Working Group collaboration, K. Akiba et al., LHC forward physics, J. Phys. G 43 (2016) 110201 [arXiv:1611.05079] [INSPIRE].
  41. [41]
    B. Pire, L. Szymanowski and J. Wagner, Can one measure timelike Compton scattering at LHC?, Phys. Rev. D 79 (2009) 014010 [arXiv:0811.0321] [INSPIRE].ADSGoogle Scholar
  42. [42]
    D. Boer et al., Gluons and the quark sea at high energies: Distributions, polarization, tomography, arXiv:1108.1713 [INSPIRE].
  43. [43]
    LHeC Study Group collaboration, J.L. Abelleira Fernandez et al., A Large Hadron Electron Collider at CERN: report on the physics and design concepts for machine and detector, J. Phys. G 39 (2012) 075001 [arXiv:1206.2913] [INSPIRE].
  44. [44]
    S.V. Mikhailov and A.V. Radyushkin, Nonlocal condensates and QCD sum rules for pion wave function, JETP Lett. 43 (1986) 712 [INSPIRE].ADSGoogle Scholar
  45. [45]
    S.J. Brodsky and G.F. de Teramond, Hadronic spectra and light-front wavefunctions in holographic QCD, Phys. Rev. Lett. 96 (2006) 201601 [hep-ph/0602252] [INSPIRE].
  46. [46]
    C. Shi et al., Kaon and pion parton distribution amplitudes to twist-three, Phys. Rev. D 92 (2015) 014035 [arXiv:1504.00689] [INSPIRE].ADSGoogle Scholar
  47. [47]
    I.V. Anikin and O.V. Teryaev, Wandzura-Wilczek approximation from generalized rotational invariance, Phys. Lett. B 509 (2001) 95 [hep-ph/0102209] [INSPIRE].
  48. [48]
    I.V. Anikin et al., On the description of exclusive processes beyond the leading twist approximation, Phys. Lett. B 682 (2010) 413 [arXiv:0903.4797] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    I.V. Anikin et al., QCD factorization of exclusive processes beyond leading twist: γ * Tρ T impact factor with twist three accuracy, Nucl. Phys. B 828 (2010) 1 [arXiv:0909.4090] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  50. [50]
    P. Kroll and K. Passek-Kumerički, Twist-3 contributions to wide-angle photoproduction of pions, Phys. Rev. D 97 (2018) 074023 [arXiv:1802.06597] [INSPIRE].ADSGoogle Scholar
  51. [51]
    S.V. Goloskokov and P. Kroll, An attempt to understand exclusive π + electroproduction, Eur. Phys. J. C 65 (2010) 137 [arXiv:0906.0460] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    F. Aslan et al., Twist-3 generalized parton distributions in deeply-virtual Compton scattering, Phys. Rev. D 98 (2018) 014038 [arXiv:1802.06243] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • G. Duplančić
    • 1
  • K. Passek-Kumerički
    • 1
  • B. Pire
    • 2
  • L. Szymanowski
    • 3
  • S. Wallon
    • 4
    • 5
  1. 1.Theoretical Physics Division, Rudjer Bošković InstituteZagrebCroatia
  2. 2.Centre de Physique Théorique, Ecole polytechnique, CNRS, Université Paris-SaclayPalaiseauFrance
  3. 3.National Center for Nuclear Research (NCBJ)WarsawPoland
  4. 4.Laboratoire de Physique Théorique, UMR 8627, CNRS, Univ. Paris-Sud, Université Paris-SaclayOrsay CedexFrance
  5. 5.Sorbonne Université, Faculté de PhysiqueParis Cedex 05France

Personalised recommendations