Advertisement

Journal of High Energy Physics

, 2018:178 | Cite as

Moments of Ioffe time parton distribution functions from non-local matrix elements

  • Joseph Karpie
  • Kostas Orginos
  • Savvas Zafeiropoulos
Open Access
Regular Article - Theoretical Physics

Abstract

We examine the relation of moments of parton distribution functions to matrix elements of non-local operators computed in lattice quantum chromodynamics. We argue that after the continuum limit is taken, these non-local matrix elements give access to moments that are finite and can be matched to those defined in the \( \overline{MS} \) scheme. We demonstrate this fact with a numerical computation of moments through non-local matrix elements in the quenched approximation and we find that these moments are in agreement with the moments obtained from direct computations of local twist-2 matrix elements in the quenched approximation.

Keywords

Lattice QCD Lattice Quantum Field Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    X. Ji, Parton Physics on a Euclidean Lattice, Phys. Rev. Lett. 110 (2013) 262002 [arXiv:1305.1539] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    C. Alexandrou et al., Lattice calculation of parton distributions, Phys. Rev. D 92 (2015) 014502 [arXiv:1504.07455] [INSPIRE].ADSGoogle Scholar
  3. [3]
    C. Alexandrou, K. Cichy, M. Constantinou, K. Jansen, A. Scapellato and F. Steffens, Light-Cone Parton Distribution Functions from Lattice QCD, Phys. Rev. Lett. 121 (2018) 112001 [arXiv:1803.02685] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    H.-W. Lin, J.-W. Chen, S.D. Cohen and X. Ji, Flavor Structure of the Nucleon Sea from Lattice QCD, Phys. Rev. D 91 (2015) 054510 [arXiv:1402.1462] [INSPIRE].ADSGoogle Scholar
  5. [5]
    J.-W. Chen et al., Parton distribution function with nonperturbative renormalization from lattice QCD, Phys. Rev. D 97 (2018) 014505 [arXiv:1706.01295] [INSPIRE].ADSGoogle Scholar
  6. [6]
    W. Broniowski and E. Ruiz Arriola, Partonic quasidistributions of the proton and pion from transverse-momentum distributions, Phys. Rev. D 97 (2018) 034031 [arXiv:1711.03377] [INSPIRE].ADSGoogle Scholar
  7. [7]
    Y.-Q. Ma and J.-W. Qiu, Exploring Partonic Structure of Hadrons Using ab initio Lattice QCD Calculations, Phys. Rev. Lett. 120 (2018) 022003 [arXiv:1709.03018] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    A.J. Chambers et al., Nucleon Structure Functions from Operator Product Expansion on the Lattice, Phys. Rev. Lett. 118 (2017) 242001 [arXiv:1703.01153] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    K.-F. Liu and S.-J. Dong, Origin of difference between \( \overline{d} \) and ū partons in the nucleon, Phys. Rev. Lett. 72 (1994) 1790 [hep-ph/9306299] [INSPIRE].
  10. [10]
    G.S. Bali et al., Pion distribution amplitude from Euclidean correlation functions: Exploring universality and higher twist effects, arXiv:1807.06671 [INSPIRE].
  11. [11]
    H.-W. Lin et al., Parton distributions and lattice QCD calculations: a community white paper, Prog. Part. Nucl. Phys. 100 (2018) 107 [arXiv:1711.07916] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    G.C. Rossi and M. Testa, Note on lattice regularization and equal-time correlators for parton distribution functions, Phys. Rev. D 96 (2017) 014507 [arXiv:1706.04428] [INSPIRE].ADSMathSciNetGoogle Scholar
  13. [13]
    G. Rossi and M. Testa, Euclidean versus Minkowski short distance, Phys. Rev. D 98 (2018) 054028 [arXiv:1806.00808] [INSPIRE].ADSGoogle Scholar
  14. [14]
    X. Ji, J.-H. Zhang and Y. Zhao, More On Large-Momentum Effective Theory Approach to Parton Physics, Nucl. Phys. B 924 (2017) 366 [arXiv:1706.07416] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  15. [15]
    A.V. Radyushkin, Quasi-parton distribution functions, momentum distributions and pseudo-parton distribution functions, Phys. Rev. D 96 (2017) 034025 [arXiv:1705.01488] [INSPIRE].ADSGoogle Scholar
  16. [16]
    K. Orginos, A. Radyushkin, J. Karpie and S. Zafeiropoulos, Lattice QCD exploration of parton pseudo-distribution functions, Phys. Rev. D 96 (2017) 094503 [arXiv:1706.05373] [INSPIRE].ADSGoogle Scholar
  17. [17]
    C. Dawson et al., New lattice approaches to the delta I = 1/2 rule, Nucl. Phys. B 514 (1998) 313 [hep-lat/9707009] [INSPIRE].
  18. [18]
    S.A. Anikin and O.I. Zavyalov, Short Distance and Light Cone Expansions for Products of Currents, Annals Phys. 116 (1978) 135 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    A.V. Radyushkin, Quark pseudodistributions at short distances, Phys. Lett. B 781 (2018) 433 [arXiv:1710.08813] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    A. Radyushkin, One-loop evolution of parton pseudo-distribution functions on the lattice, Phys. Rev. D 98 (2018) 014019 [arXiv:1801.02427] [INSPIRE].ADSGoogle Scholar
  21. [21]
    B.L. Ioffe, Space-time picture of photon and neutrino scattering and electroproduction cross-section asymptotics, Phys. Lett. B 30 (1969) 123 [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    V. Braun, P. Gornicki and L. Mankiewicz, Ioffe - time distributions instead of parton momentum distributions in description of deep inelastic scattering, Phys. Rev. D 51 (1995) 6036 [hep-ph/9410318] [INSPIRE].
  23. [23]
    R.A. Briceño, M.T. Hansen and C.J. Monahan, Role of the Euclidean signature in lattice calculations of quasidistributions and other nonlocal matrix elements, Phys. Rev. D 96 (2017) 014502 [arXiv:1703.06072] [INSPIRE].ADSMathSciNetGoogle Scholar
  24. [24]
    T. Ishikawa, Y.-Q. Ma, J.-W. Qiu and S. Yoshida, Practical quasi parton distribution functions, arXiv:1609.02018 [INSPIRE].
  25. [25]
    J.-H. Zhang, J.-W. Chen and C. Monahan, Parton distribution functions from reduced Ioffe-time distributions, Phys. Rev. D 97 (2018) 074508 [arXiv:1801.03023] [INSPIRE].ADSGoogle Scholar
  26. [26]
    J. Karpie, K. Orginos, A. Radyushkin and S. Zafeiropoulos, Parton distribution functions on the lattice and in the continuum, EPJ Web Conf. 175 (2018) 06032 [arXiv:1710.08288] [INSPIRE].CrossRefGoogle Scholar
  27. [27]
    G. Martinelli, C. Pittori, C.T. Sachrajda, M. Testa and A. Vladikas, A general method for nonperturbative renormalization of lattice operators, Nucl. Phys. B 445 (1995) 81 [hep-lat/9411010] [INSPIRE].
  28. [28]
    M. Guagnelli, K. Jansen and R. Petronzio, Renormalization group invariant average momentum of nonsinglet parton densities, Phys. Lett. B 459 (1999) 594 [hep-lat/9903012] [INSPIRE].
  29. [29]
    C. Alexandrou et al., A complete non-perturbative renormalization prescription for quasi-PDFs, Nucl. Phys. B 923 (2017) 394 [arXiv:1706.00265] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  30. [30]
    G. Martinelli and C.T. Sachrajda, On the difficulty of computing higher twist corrections, Nucl. Phys. B 478 (1996) 660 [hep-ph/9605336] [INSPIRE].
  31. [31]
    T. Izubuchi, X. Ji, L. Jin, I.W. Stewart and Y. Zhao, Factorization Theorem Relating Euclidean and Light-Cone Parton Distributions, Phys. Rev. D 98 (2018) 056004 [arXiv:1801.03917] [INSPIRE].ADSGoogle Scholar
  32. [32]
    M. Göckeler et al., Polarized and unpolarized nucleon structure functions from lattice QCD, Phys. Rev. D 53 (1996) 2317 [hep-lat/9508004] [INSPIRE].
  33. [33]
    M. Göckeler et al., Perturbative and Nonperturbative Renormalization in Lattice QCD, Phys. Rev. D 82 (2010) 114511 [Erratum ibid. D 86 (2012) 099903] [arXiv:1003.5756] [INSPIRE].
  34. [34]
    A.V. Radyushkin, Structure of parton quasi-distributions and their moments, arXiv:1807.07509 [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Joseph Karpie
    • 1
    • 2
  • Kostas Orginos
    • 1
    • 2
  • Savvas Zafeiropoulos
    • 3
  1. 1.Department of PhysicsThe College of William & MaryWilliamsburgU.S.A.
  2. 2.Thomas Jefferson National Accelerator FacilityNewport NewsU.S.A.
  3. 3.Institute for Theoretical PhysicsHeidelberg UniversityHeidelbergGermany

Personalised recommendations