Advertisement

Journal of High Energy Physics

, 2018:175 | Cite as

M-theory curves from warped AdS6 in Type IIB

  • Justin Kaidi
  • Christoph F. Uhlemann
Open Access
Regular Article - Theoretical Physics
  • 17 Downloads

Abstract

We establish a close relation between recently constructed AdS6 solutions in Type IIB supergravity, which describe the near-horizon limit of (p, q) 5-brane junctions, and the curves wrapped by M5-branes in the M-theory realization of the 5-brane junctions. This provides a geometric interpretation of various objects appearing in the construction of the Type IIB solutions and a physical interpretation of the regularity conditions. Conversely, the Type IIB solutions provide explicit solutions to the equations defining the M-theory curves associated with (p, q) 5-brane junctions.

Keywords

AdS-CFT Correspondence Gauge-gravity correspondence M-Theory Superstring Vacua 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    N. Seiberg, Five-dimensional SUSY field theories, nontrivial fixed points and string dynamics, Phys. Lett. B 388 (1996) 753 [hep-th/9608111] [INSPIRE].
  2. [2]
    A. Brandhuber and Y. Oz, The D4-D8 brane system and five-dimensional fixed points, Phys. Lett. B 460 (1999) 307 [hep-th/9905148] [INSPIRE].
  3. [3]
    O. Bergman and D. Rodriguez-Gomez, 5d quivers and their AdS 6 duals, JHEP 07 (2012) 171 [arXiv:1206.3503] [INSPIRE].
  4. [4]
    O. Aharony and A. Hanany, Branes, superpotentials and superconformal fixed points, Nucl. Phys. B 504 (1997) 239 [hep-th/9704170] [INSPIRE].
  5. [5]
    O. Aharony, A. Hanany and B. Kol, Webs of (p, q) five-branes, five-dimensional field theories and grid diagrams, JHEP 01 (1998) 002 [hep-th/9710116] [INSPIRE].
  6. [6]
    O. DeWolfe, A. Hanany, A. Iqbal and E. Katz, Five-branes, seven-branes and five-dimensional E(n) field theories, JHEP 03 (1999) 006 [hep-th/9902179] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    D.R. Morrison and N. Seiberg, Extremal transitions and five-dimensional supersymmetric field theories, Nucl. Phys. B 483 (1997) 229 [hep-th/9609070] [INSPIRE].
  8. [8]
    M.R. Douglas, S.H. Katz and C. Vafa, Small instantons, Del Pezzo surfaces and type-I-prime theory, Nucl. Phys. B 497 (1997) 155 [hep-th/9609071] [INSPIRE].
  9. [9]
    K.A. Intriligator, D.R. Morrison and N. Seiberg, Five-dimensional supersymmetric gauge theories and degenerations of Calabi-Yau spaces, Nucl. Phys. B 497 (1997) 56 [hep-th/9702198] [INSPIRE].
  10. [10]
    B. Kol, 5-D field theories and M-theory, JHEP 11 (1999) 026 [hep-th/9705031] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    A. Brandhuber, N. Itzhaki, J. Sonnenschein, S. Theisen and S. Yankielowicz, On the M-theory approach to (compactified) 5-D field theories, Phys. Lett. B 415 (1997) 127 [hep-th/9709010] [INSPIRE].
  12. [12]
    B. Kol and J. Rahmfeld, BPS spectrum of five-dimensional field theories, (p, q) webs and curve counting, JHEP 08 (1998) 006 [hep-th/9801067] [INSPIRE].
  13. [13]
    S. Ferrara, A. Kehagias, H. Partouche and A. Zaffaroni, AdS 6 interpretation of 5-D superconformal field theories, Phys. Lett. B 431 (1998) 57 [hep-th/9804006] [INSPIRE].
  14. [14]
    A. Passias and P. Richmond, Perturbing AdS 6 ×w S 4 : linearised equations and spin-2 spectrum, JHEP 07 (2018) 058 [arXiv:1804.09728] [INSPIRE].
  15. [15]
    A. Passias, A note on supersymmetric AdS 6 solutions of massive type IIA supergravity, JHEP 01 (2013) 113 [arXiv:1209.3267] [INSPIRE].
  16. [16]
    D.L. Jafferis and S.S. Pufu, Exact results for five-dimensional superconformal field theories with gravity duals, JHEP 05 (2014) 032 [arXiv:1207.4359] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    M. Gutperle, J. Kaidi and H. Raj, Mass deformations of 5d SCFTs via holography, JHEP 02 (2018) 165 [arXiv:1801.00730] [INSPIRE].
  18. [18]
    C.-M. Chang, M. Fluder, Y.-H. Lin and Y. Wang, Romans Supergravity from Five-Dimensional Holograms, JHEP 05 (2018) 039 [arXiv:1712.10313] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    E. D’Hoker, M. Gutperle, A. Karch and C.F. Uhlemann, Warped AdS 6 × S 2 in Type IIB supergravity I: Local solutions, JHEP 08 (2016) 046 [arXiv:1606.01254] [INSPIRE].
  20. [20]
    E. D’Hoker, M. Gutperle and C.F. Uhlemann, Holographic duals for five-dimensional superconformal quantum field theories, Phys. Rev. Lett. 118 (2017) 101601 [arXiv:1611.09411] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    E. D’Hoker, M. Gutperle and C.F. Uhlemann, Warped AdS 6 × S 2 in Type IIB supergravity II: Global solutions and five-brane webs, JHEP 05 (2017) 131 [arXiv:1703.08186] [INSPIRE].
  22. [22]
    F. Apruzzi, M. Fazzi, A. Passias, D. Rosa and A. Tomasiello, AdS 6 solutions of type-II supergravity, JHEP 11 (2014) 099 [Erratum ibid. 1505 (2015) 012] [arXiv:1406.0852] [INSPIRE].
  23. [23]
    H. Kim, N. Kim and M. Suh, Supersymmetric AdS 6 Solutions of Type IIB Supergravity, Eur. Phys. J. C 75 (2015) 484 [arXiv:1506.05480] [INSPIRE].
  24. [24]
    H. Kim and N. Kim, Comments on the symmetry of AdS 6 solutions in string/M-theory and Killing spinor equations, Phys. Lett. B 760 (2016) 780 [arXiv:1604.07987] [INSPIRE].
  25. [25]
    M. Gutperle, C. Marasinou, A. Trivella and C.F. Uhlemann, Entanglement entropy vs. free energy in IIB supergravity duals for 5d SCFTs, JHEP 09 (2017) 125 [arXiv:1705.01561] [INSPIRE].
  26. [26]
    J. Kaidi, (p, q)-strings probing five-brane webs, JHEP 10 (2017) 087 [arXiv:1708.03404] [INSPIRE].
  27. [27]
    M. Gutperle, C.F. Uhlemann and O. Varela, Massive spin 2 excitations in AdS 6 × S 2 warped spacetimes, JHEP 07 (2018) 091 [arXiv:1805.11914] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  28. [28]
    O. Bergman, D. Rodríguez-Gómez and C.F. Uhlemann, Testing AdS6/CF T5 in Type IIB with stringy operators, JHEP 08 (2018) 127 [arXiv:1806.07898] [INSPIRE].
  29. [29]
    M. Fluder and C.F. Uhlemann, Precision Test of AdS 6 /CF T 5 in Type IIB String Theory, Phys. Rev. Lett. 121 (2018) 171603 [arXiv:1806.08374] [INSPIRE].
  30. [30]
    E. D’Hoker, M. Gutperle and C.F. Uhlemann, Warped AdS 6 × S 2 in Type IIB supergravity III: Global solutions with seven-branes, JHEP 11 (2017) 200 [arXiv:1706.00433] [INSPIRE].
  31. [31]
    M. Gutperle, A. Trivella and C.F. Uhlemann, Type IIB 7-branes in warped AdS 6 : partition functions, brane webs and probe limit, JHEP 04 (2018) 135 [arXiv:1802.07274] [INSPIRE].
  32. [32]
    J. Hong, J.T. Liu and D.R. Mayerson, Gauged Six-Dimensional Supergravity from Warped IIB Reductions, JHEP 09 (2018) 140 [arXiv:1808.04301] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  33. [33]
    E. Malek, H. Samtleben and V. Vall Camell, Supersymmetric AdS 7 and AdS 6 vacua and their minimal consistent truncations from exceptional field theory, Phys. Lett. B 786 (2018) 171 [arXiv:1808.05597] [INSPIRE].
  34. [34]
    Y. Lozano, E. Ó Colgáin, D. Rodríguez-Gómez and K. Sfetsos, Supersymmetric AdS6 via T Duality, Phys. Rev. Lett. 110 (2013) 231601 [arXiv:1212.1043] [INSPIRE].
  35. [35]
    Y. Lozano, E. Ó. O Colgáin and D. Rodr´ıguez-Gómez, Hints of 5d Fixed Point Theories from Non-Abelian T-duality, JHEP 05 (2014) 009 [arXiv:1311.4842] [INSPIRE].
  36. [36]
    Y. Lozano, N.T. Macpherson and J. Montero, AdS 6 T-duals and Type IIB AdS 6 × S 2 Geometries with 7-Branes, arXiv:1810.08093 [INSPIRE].
  37. [37]
    Y. Lozano, N.T. Macpherson and J. Montero, AdS 6 T-duals and AdS 6 × S 2 geometries in Type IIB, in Corfu2018: 18th Hellenic School and Workshops on Elementary Particle Physics and Gravity (Corfu2018), Corfu, Corfu, Greece, August 31-September 28, 2018 (2018) [arXiv:1811.00054] [INSPIRE].
  38. [38]
    N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19 [Erratum ibid. B 430 (1994) 485] [hep-th/9407087] [INSPIRE].
  39. [39]
    E. Witten, Solutions of four-dimensional field theories via M-theory, Nucl. Phys. B 500 (1997) 3 [hep-th/9703166] [INSPIRE].
  40. [40]
    A. Hanany and K.D. Kennaway, Dimer models and toric diagrams, hep-th/0503149 [INSPIRE].
  41. [41]
    E. Wendt, Arithmetische Studien über den “letzten” Fermatschen Satz, welcher aussagt, dass die Gleichung an=bn+cn für n > 2 in ganzen Zahlen nicht auflösbar ist, Reimer (1894).Google Scholar
  42. [42]
    C. Helou, On wendt’s determinant, Math. Comput. 66 (1997) 1341.Google Scholar
  43. [43]
    F. Benini, S. Benvenuti and Y. Tachikawa, Webs of five-branes and N = 2 superconformal field theories, JHEP 09 (2009) 052 [arXiv:0906.0359] [INSPIRE].
  44. [44]
    M. Henningson and P. Yi, Four-dimensional BPS spectra via M-theory, Phys. Rev. D 57 (1998) 1291 [hep-th/9707251] [INSPIRE].
  45. [45]
    A. Mikhailov, BPS states and minimal surfaces, Nucl. Phys. B 533 (1998) 243 [hep-th/9708068] [INSPIRE].
  46. [46]
    R. Kenyon, A. Okounkov and S. Sheffield, Dimers and amoebae, math-ph/0311005 [INSPIRE].
  47. [47]
    N.C. Leung and C. Vafa, Branes and toric geometry, Adv. Theor. Math. Phys. 2 (1998) 91 [hep-th/9711013] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Mani L. Bhaumik Institute for Theoretical Physics, Department of Physics and AstronomyUniversity of CaliforniaLos AngelesU.S.A.

Personalised recommendations