Advertisement

Journal of High Energy Physics

, 2018:146 | Cite as

Deforming black holes in AdS

  • Gary T. Horowitz
  • Jorge E. Santos
  • Chiara ToldoEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

We investigate how changes in the boundary metric affect the shape of AdS black holes. Most of our work is analytic and based on the AdS C-metric. Both asymptotically hyperbolic and compact black holes are studied. It has recently been shown that the AdS C-metric contains configurations of highly deformed black holes, and we show that these deformations are usually the result of similar deformations of the boundary metric. However, quite surprisingly, we also find cases where the horizon is insensitive to certain large changes in the boundary geometry. This motivates the search for a new family of black hole solutions with the same boundary geometry in which the horizon does respond to the changes in the boundary. We numerically construct these solutions and we (numerically) explore how the horizon response to boundary deformations depends on temperature.

Keywords

AdS-CFT Correspondence Black Holes 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    Y. Chen, Y.-K. Lim and E. Teo, Deformed hyperbolic black holes, Phys. Rev. D 92 (2015) 044058 [arXiv:1507.02416] [INSPIRE].
  2. [2]
    Y. Chen and E. Teo, Black holes with bottle-shaped horizons, Phys. Rev. D 93 (2016) 124028 [arXiv:1604.07527] [INSPIRE].
  3. [3]
    A. Gnecchi, K. Hristov, D. Klemm, C. Toldo and O. Vaughan, Rotating black holes in 4d gauged supergravity, JHEP 01 (2014) 127 [arXiv:1311.1795] [INSPIRE].
  4. [4]
    D. Klemm, Four-dimensional black holes with unusual horizons, Phys. Rev. D 89 (2014) 084007 [arXiv:1401.3107] [INSPIRE].
  5. [5]
    M.T. Anderson, P.T. Chrusciel and E. Delay, Nontrivial, static, geodesically complete, vacuum space-times with a negative cosmological constant, JHEP 10 (2002) 063 [gr-qc/0211006] [INSPIRE].
  6. [6]
    J. Markeviciute and J.E. Santos, Stirring a black hole, JHEP 02 (2018) 060 [arXiv:1712.07648] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    J.L. Blazquez-Salcedo, J. Kunz, F. Navarro-Lerida and E. Radu, New black holes in D = 5 minimal gauged supergravity: Deformed boundaries and frozen horizons, Phys. Rev. D 97 (2018) 081502 [arXiv:1711.08292] [INSPIRE].
  8. [8]
    T. Levi-Civita, ds2 einsteiniani in campi Newtoniani. I. Generalità e prima approssimazione, Rend. Acc. Lincei 26 (1917) 307.Google Scholar
  9. [9]
    T. Levi-Civita, ds2 Einsteiniani in campi Newtoniani. II. Condizioni di integrabilità e comportamento geometrico spaziale, Rend. Acc. Lincei 27 (1918) 3.Google Scholar
  10. [10]
    T. Levi-Civita, ds2 Einsteiniani in campi Newtoniani. III. Formule ausiliarie, Rend. Acc. Lincei 27 (1918) 183.Google Scholar
  11. [11]
    T. Levi-Civita, ds2 Einsteiniani in campi Newtoniani. IV. Il sottocaso B2): Riduzione delle equazioni differenziali, Rend. Acc. Lincei 27 (1918) 220.Google Scholar
  12. [12]
    T. Levi-Civita, ds2 Einsteiniani in campi Newtoniani. V. Il sottocaso B2): Soluzioni longitudinali (ξ = 0), Rend. Acc. Lincei 27 (1918) 240.Google Scholar
  13. [13]
    T. Levi-Civita, ds2 Einsteiniani in campi Newtoniani. VI. Il sottocaso B2): Soluzioni quadrantali (n = 0), Rend. Acc. Lincei 27 (1918) 283.Google Scholar
  14. [14]
    T. Levi-Civita, ds2 Einsteiniani in campi Newtoniani. VII. Il sottocaso B2): Soluzioni oblique, Rend. Acc. Lincei 27 (1918) 343.Google Scholar
  15. [15]
    T. Levi-Civita, ds2 Einsteiniani in campi Newtoniani. VIII. Soluzioni binarie di Weyl, Rend. Acc. Lincei 28 (1918) 3Google Scholar
  16. [16]
    T. Levi-Civita, ds2 Einsteiniani in campi Newtoniani. IX. L’analogo del potenziale logaritmico, Rend. Acc. Lincei 28 (1919) 101.Google Scholar
  17. [17]
    G. Kamath, Cylindrical symmetry: an aid to calculating the zeta-function in 3 + 1 dimensional curved space, PoS(ICHEP 2016)791 [INSPIRE].
  18. [18]
    J.F. Plebanski and M. Demianski, Rotating, charged and uniformly accelerating mass in general relativity, Annals Phys. 98 (1976) 98 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    J. Podolsky, Accelerating black holes in Anti-de Sitter universe, Czech. J. Phys. 52 (2002) 1 [gr-qc/0202033] [INSPIRE].
  20. [20]
    O.J.C. Dias and J.P.S. Lemos, Pair of accelerated black holes in Anti-de Sitter background: AdS C metric, Phys. Rev. D 67 (2003) 064001 [hep-th/0210065] [INSPIRE].
  21. [21]
    P. Krtous, Accelerated black holes in an Anti-de Sitter universe, Phys. Rev. D 72 (2005) 124019 [gr-qc/0510101] [INSPIRE].
  22. [22]
    R. Emparan, G.T. Horowitz and R.C. Myers, Exact description of black holes on branes, JHEP 01 (2000) 007 [hep-th/9911043] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    R. Emparan, G.T. Horowitz and R.C. Myers, Exact description of black holes on branes. 2. Comparison with BTZ black holes and black strings, JHEP 01 (2000) 021 [hep-th/9912135] [INSPIRE].
  24. [24]
    V.E. Hubeny, D. Marolf and M. Rangamani, Hawking radiation in large N strongly-coupled field theories, Class. Quant. Grav. 27 (2010) 095015 [arXiv:0908.2270] [INSPIRE].
  25. [25]
    V.E. Hubeny, D. Marolf and M. Rangamani, Black funnels and droplets from the AdS C-metrics, Class. Quant. Grav. 27 (2010) 025001 [arXiv:0909.0005] [INSPIRE].
  26. [26]
    Y. Chen, Y.-K. Lim and E. Teo, New form of the C metric with cosmological constant, Phys. Rev. D 91 (2015) 064014 [arXiv:1501.01355] [INSPIRE].
  27. [27]
    C. Fefferman and C.R. Graham, The ambient metric, Ann. Math. Stud. 178 (2011) 1 [arXiv:0710.0919] [INSPIRE].Google Scholar
  28. [28]
    S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  29. [29]
    M. Headrick, S. Kitchen and T. Wiseman, A new approach to static numerical relativity and its application to Kaluza-Klein black holes, Class. Quant. Grav. 27 (2010) 035002 [arXiv:0905.1822] [INSPIRE].
  30. [30]
    T. Wiseman, Numerical construction of static and stationary black holes, arXiv:1107.5513.
  31. [31]
    O.J.C. Dias, J.E. Santos and B. Way, Numerical methods for finding stationary gravitational solutions, Class. Quant. Grav. 33 (2016) 133001 [arXiv:1510.02804] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    P. Figueras, J. Lucietti and T. Wiseman, Ricci solitons, Ricci flow and strongly coupled CFT in the Schwarzschild Unruh or Boulware vacua, Class. Quant. Grav. 28 (2011) 215018 [arXiv:1104.4489] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    P. Figueras and T. Wiseman, On the existence of stationary Ricci solitons, Class. Quant. Grav. 34 (2017) 145007 [arXiv:1610.06178] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear fluid dynamics from gravity, JHEP 02 (2008) 045 [arXiv:0712.2456] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    S. Bhattacharyya et al., Local fluid dynamical entropy from gravity, JHEP 06 (2008) 055 [arXiv:0803.2526] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    H.K. Kunduri and J. Lucietti, Classification of near-horizon geometries of extremal black holes, Living Rev. Rel. 16 (2013) 8 [arXiv:1306.2517] [INSPIRE].CrossRefzbMATHGoogle Scholar
  37. [37]
    G.T. Horowitz, N. Iqbal, J.E. Santos and B. Way, Hovering black holes from charged defects, Class. Quant. Grav. 32 (2015) 105001 [arXiv:1412.1830] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    B. Ganchev, D. Marolf and J.E. Santos, to appear.Google Scholar
  39. [39]
    M. Appels, R. Gregory and D. Kubiznak, Thermodynamics of accelerating black holes, Phys. Rev. Lett. 117 (2016) 131303 [arXiv:1604.08812] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    A. Anabalón et al., Holographic thermodynamics of accelerating black holes, arXiv:1805.02687 [INSPIRE].
  41. [41]
    A. Hickling, J. Lucietti and T. Wiseman, Null infinity and extremal horizons in AdS-CFT, Class. Quant. Grav. 32 (2015) 035008 [arXiv:1408.3417] [INSPIRE].
  42. [42]
    G.T. Horowitz and E. Shaghoulian, Detachable circles and temperature-inversion dualities for CFT d, JHEP 01 (2018) 135 [arXiv:1709.06084] [INSPIRE].
  43. [43]
    G.T. Horowitz, J.E. Santos and B. Way, Evidence for an electrifying violation of cosmic censorship, Class. Quant. Grav. 33 (2016) 195007 [arXiv:1604.06465] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    M.M. Caldarelli, O.J.C. Dias, R. Monteiro and J.E. Santos, Black funnels and droplets in thermal equilibrium, JHEP 05 (2011) 116 [arXiv:1102.4337] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Gary T. Horowitz
    • 1
  • Jorge E. Santos
    • 2
  • Chiara Toldo
    • 3
    • 4
    Email author
  1. 1.Department of PhysicsUniversity of CaliforniaSanta BarbaraU.S.A.
  2. 2.Department of Applied Mathematics and Theoretical PhysicsUniversity of CambridgeCambridgeU.K.
  3. 3.Kavli Institute for Theoretical PhysicsUniversity of CaliforniaSanta BarbaraU.S.A.
  4. 4.Centre de Physique Théorique (CPHT), Ecole PolytechniquePalaiseau CedexFrance

Personalised recommendations