Journal of High Energy Physics

, 2018:142 | Cite as

The dS swampland conjecture with the electroweak symmetry and QCD chiral symmetry breaking

  • Kiwoon Choi
  • Dongjin ChwayEmail author
  • Chang Sub Shin
Open Access
Regular Article - Theoretical Physics


The dS swampland conjecture |∇V|/Vc, where c is presumed to be a positive constant of order unity, implies that the dark energy density of our Universe can not be a cosmological constant, but mostly the potential energy of an evolving quintessence scalar field. As the dark energy includes the effects of the electroweak symmetry breaking and the QCD chiral symmetry breaking, if the dS swampland conjecture is applicable for the low energy quintessence potential, it can be applied for the Higgs and pion potential also. On the other hand, the Higgs and pion potential has the well-known dS extrema, and applying the dS swampland conjecture to those dS extrema may provide stringent constraints on the viable quintessence, as well as on the conjecture itself. We examine this issue and find that the pion dS extremum at cos(π0/fπ) = −1 implies c\( \mathcal{O} \)(10−2–10−5) for arbitrary form of the quintessence potential and couplings, where the weaker bound (10−2) is available only for a specific type of quintessence whose couplings respect the equivalence principle, while the stronger bound (10−5) applies for generic quintessence violating the equivalence principle. We also discuss the possibility to relax this bound with an additional scalar field, e.g. a light modulus which has a runaway behavior at the pion dS extremum. We argue that such possibility is severely constrained by a variety of observational constraints which do not leave a room to significantly relax the bound. We make a similar analysis for the Higgs dS extremum at H = 0, which results in a weaker bound on c.


Effective Field Theories Cosmology of Theories beyond the SM 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    G. Obied, H. Ooguri, L. Spodyneiko and C. Vafa, de Sitter Space and the Swampland, arXiv:1806.08362 [INSPIRE].
  2. [2]
    P. Agrawal, G. Obied, P.J. Steinhardt and C. Vafa, On the Cosmological Implications of the String Swampland, Phys. Lett. B 784 (2018) 271 [arXiv:1806.09718] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    B. Ratra and P.J.E. Peebles, Cosmological Consequences of a Rolling Homogeneous Scalar Field, Phys. Rev. D 37 (1988) 3406 [INSPIRE].ADSGoogle Scholar
  4. [4]
    C. Wetterich, Cosmology and the Fate of Dilatation Symmetry, Nucl. Phys. B 302 (1988) 668 [arXiv:1711.03844] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    I. Zlatev, L.-M. Wang and P.J. Steinhardt, Quintessence, cosmic coincidence and the cosmological constant, Phys. Rev. Lett. 82 (1999) 896 [astro-ph/9807002] [INSPIRE].
  6. [6]
    F. Denef, A. Hebecker and T. Wrase, de Sitter swampland conjecture and the Higgs potential, Phys. Rev. D 98 (2018) 086004 [arXiv:1807.06581] [INSPIRE].
  7. [7]
    G. Dvali and C. Gomez, On Exclusion of Positive Cosmological Constant, arXiv:1806.10877 [INSPIRE].
  8. [8]
    D. Andriot, On the de Sitter swampland criterion, Phys. Lett. B 785 (2018) 570 [arXiv:1806.10999] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  9. [9]
    S.K. Garg and C. Krishnan, Bounds on Slow Roll and the de Sitter Swampland, arXiv:1807.05193 [INSPIRE].
  10. [10]
    S. Banerjee, U. Danielsson, G. Dibitetto, S. Giri and M. Schillo, Emergent de Sitter cosmology from decaying AdS, arXiv:1807.01570 [INSPIRE].
  11. [11]
    L. Aalsma, M. Tournoy, J.P. Van Der Schaar and B. Vercnocke, Supersymmetric embedding of antibrane polarization, Phys. Rev. D 98 (2018) 086019 [arXiv:1807.03303] [INSPIRE].ADSGoogle Scholar
  12. [12]
    A. Achúcarro and G.A. Palma, The string swampland constraints require multi-field inflation, arXiv:1807.04390 [INSPIRE].
  13. [13]
    J.-L. Lehners, Small-Field and Scale-Free: Inflation and Ekpyrosis at their Extremes, JCAP 11 (2018) 001 [arXiv:1807.05240] [INSPIRE].
  14. [14]
    A. Kehagias and A. Riotto, A note on Inflation and the Swampland, arXiv:1807.05445 [INSPIRE].
  15. [15]
    M. Dias, J. Frazer, A. Retolaza and A. Westphal, Primordial Gravitational Waves and the Swampland, arXiv:1807.06579 [INSPIRE].
  16. [16]
    E. Ó. Colgáin, M.H. P.M. Van Putten and H. Yavartanoo, Observational consequences of H 0 tension in de Sitter Swampland, arXiv:1807.07451 [INSPIRE].
  17. [17]
    C. Roupec and T. Wrase, de Sitter extrema and the swampland, arXiv:1807.09538 [INSPIRE].
  18. [18]
    D. Andriot, New constraints on classical de Sitter: flirting with the swampland, arXiv:1807.09698 [INSPIRE].
  19. [19]
    H. Matsui and F. Takahashi, Eternal Inflation and Swampland Conjectures, arXiv:1807.11938 [INSPIRE].
  20. [20]
    I. Ben-Dayan, Draining the Swampland, arXiv:1808.01615 [INSPIRE].
  21. [21]
    C. Damian and O. Loaiza-Brito, Two-field axion inflation and the swampland constraint in the flux-scaling scenario, arXiv:1808.03397 [INSPIRE].
  22. [22]
    J.P. Conlon, The de Sitter swampland conjecture and supersymmetric AdS vacua, Int. J. Mod. Phys. A 33 (2018) 1850178 [arXiv:1808.05040] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    W.H. Kinney, S. Vagnozzi and L. Visinelli, The Zoo Plot Meets the Swampland: Mutual (In)Consistency of Single-Field Inflation, String Conjectures and Cosmological Data, arXiv:1808.06424 [INSPIRE].
  24. [24]
    K. Dasgupta, M. Emelin, E. McDonough and R. Tatar, Quantum Corrections and the de Sitter Swampland Conjecture, arXiv:1808.07498 [INSPIRE].
  25. [25]
    S. Kachru and S.P. Trivedi, A comment on effective field theories of flux vacua, arXiv:1808.08971 [INSPIRE].
  26. [26]
    L. Heisenberg, M. Bartelmann, R. Brandenberger and A. Refregier, Dark Energy in the Swampland II, arXiv:1809.00154 [INSPIRE].
  27. [27]
    H. Murayama, M. Yamazaki and T.T. Yanagida, Do We Live in the Swampland?, arXiv:1809.00478 [INSPIRE].
  28. [28]
    M.C.D. Marsh, The Swampland, Quintessence and the Vacuum Energy, arXiv:1809.00726 [INSPIRE].
  29. [29]
    K. Choi, String or M-theory axion as a quintessence, Phys. Rev. D 62 (2000) 043509 [hep-ph/9902292] [INSPIRE].
  30. [30]
    K. Choi, Quintessence, flat potential and string/M theory axion, in Supersymmetry, supergravity and superstring. Proceedings, KIAS-CTP International Symposium, Seoul, Korea, June 23–26, 1999, pp. 280–299 (1999) [hep-ph/9912218] [INSPIRE].
  31. [31]
    C.-I. Chiang and H. Murayama, Building Supergravity Quintessence Model, arXiv:1808.02279 [INSPIRE].
  32. [32]
    M. Cicoli, S. De Alwis, A. Maharana, F. Muia and F. Quevedo, de Sitter vs Quintessence in String Theory, arXiv:1808.08967 [INSPIRE].
  33. [33]
    Y. Akrami, R. Kallosh, A. Linde and V. Vardanyan, The landscape, the swampland and the era of precision cosmology, arXiv:1808.09440 [INSPIRE].
  34. [34]
    B. Bertotti, L. Iess and P. Tortora, A test of general relativity using radio links with the Cassini spacecraft, Nature 425 (2003) 374 [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    R.M. Godun et al., Frequency Ratio of Two Optical Clock Transitions in Yb+171 and Constraints on the Time Variation of Fundamental Constants, Phys. Rev. Lett. 113 (2014) 210801 [arXiv:1407.0164] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    P. Touboul et al., MICROSCOPE Mission: First Results of a Space Test of the Equivalence Principle, Phys. Rev. Lett. 119 (2017) 231101 [arXiv:1712.01176] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    J. Bergé, P. Brax, G. Métris, M. Pernot-Borràs, P. Touboul and J.-P. Uzan, MICROSCOPE Mission: First Constraints on the Violation of the Weak Equivalence Principle by a Light Scalar Dilaton, Phys. Rev. Lett. 120 (2018) 141101 [arXiv:1712.00483] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    J.-P. Uzan, Varying Constants, Gravitation and Cosmology, Living Rev. Rel. 14 (2011) 2 [arXiv:1009.5514] [INSPIRE].CrossRefzbMATHGoogle Scholar
  39. [39]
    L. Heisenberg, M. Bartelmann, R. Brandenberger and A. Refregier, Dark Energy in the Swampland, arXiv:1808.02877 [INSPIRE].
  40. [40]
    T. Damour and J.F. Donoghue, Phenomenology of the Equivalence Principle with Light Scalars, Class. Quant. Grav. 27 (2010) 202001 [arXiv:1007.2790] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  41. [41]
    T. Damour and J.F. Donoghue, Equivalence Principle Violations and Couplings of a Light Dilaton, Phys. Rev. D 82 (2010) 084033 [arXiv:1007.2792] [INSPIRE].ADSGoogle Scholar
  42. [42]
    M. Hohmann, L. Jarv, P. Kuusk and E. Randla, Post-Newtonian parameters γ and β of scalar-tensor gravity with a general potential, Phys. Rev. D 88 (2013) 084054 [Erratum ibid. D 89 (2014) 069901] [arXiv:1309.0031] [INSPIRE].
  43. [43]
    A. Schärer, R. Angélil, R. Bondarescu, P. Jetzer and A. Lundgren, Testing scalar-tensor theories and parametrized post-Newtonian parameters in Earth orbit, Phys. Rev. D 90 (2014) 123005 [arXiv:1410.7914] [INSPIRE].ADSGoogle Scholar
  44. [44]
    L. Perivolaropoulos, PPN Parameter gamma and Solar System Constraints of Massive Brans-Dicke Theories, Phys. Rev. D 81 (2010) 047501 [arXiv:0911.3401] [INSPIRE].ADSGoogle Scholar
  45. [45]
    X.-M. Deng and Y. Xie, Solar System tests of a scalar-tensor gravity with a general potential: Insensitivity of light deflection and Cassini tracking, Phys. Rev. D 93 (2016) 044013 [INSPIRE].ADSMathSciNetGoogle Scholar
  46. [46]
    A. Arvanitaki, M. Baryakhtar and X. Huang, Discovering the QCD Axion with Black Holes and Gravitational Waves, Phys. Rev. D 91 (2015) 084011 [arXiv:1411.2263] [INSPIRE].ADSGoogle Scholar
  47. [47]
    G.L. Smith, C.D. Hoyle, J.H. Gundlach, E.G. Adelberger, B.R. Heckel and H.E. Swanson, Short range tests of the equivalence principle, Phys. Rev. D 61 (2000) 022001 [INSPIRE].ADSGoogle Scholar
  48. [48]
    E. Fischbach and C. Talmadge, Ten years of the fifth force, in Dark matter in cosmology, quantum measurements, experimental gravitation. Proceedings, 31st Rencontres de Moriond, 16th Moriond Workshop, Les Arcs, France, January 2–27, 1996, pp. 443–451 (1996) [hep-ph/9606249] [INSPIRE].
  49. [49]
    A. Arvanitaki, J. Huang and K. Van Tilburg, Searching for dilaton dark matter with atomic clocks, Phys. Rev. D 91 (2015) 015015 [arXiv:1405.2925] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Center for Theoretical Physics of the UniverseInstitute for Basic ScienceDaejeonSouth Korea

Personalised recommendations