Journal of High Energy Physics

, 2018:140 | Cite as

Bootstrapping the minimal 3D SCFT

  • Alexander Atanasov
  • Aaron Hillman
  • David PolandEmail author
Open Access
Regular Article - Theoretical Physics


We study the conformal bootstrap constraints for 3D conformal field theories with a 2 or parity symmetry, assuming a single relevant scalar operator ϵ that is invariant under the symmetry. When there is additionally a single relevant odd scalar σ, we map out the allowed space of dimensions and three-point couplings of such “Ising-like” CFTs. If we allow a second relevant odd scalar σ′, we identify a feature in the allowed space compatible with 3D \( \mathcal{N} \) = 1 superconformal symmetry and conjecture that it corresponds to the minimal \( \mathcal{N} \) = 1 supersymmetric extension of the Ising CFT. This model has appeared in previous numerical bootstrap studies, as well as in proposals for emergent supersymmetry on the boundaries of topological phases of matter. Adding further constraints from 3D \( \mathcal{N} \) =1 superconformal symmetry, we isolate this theory and use the numerical bootstrap to compute the leading scaling dimensions Δσ = Δϵ − 1 = .58444(22) and three-point couplings λσσϵ = 1.0721(2) and λϵϵϵ = 1.67(1). We additionally place bounds on the central charge and use the extremal functional method to estimate the dimensions of the next several operators in the spectrum. Based on our results we observe the possible exact relation λϵϵϵ/λσσϵ = tan(1).


Conformal and W Symmetry Conformal Field Theory Nonperturbative Effects Supersymmetry and Duality 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    S. El-Showk et al., Solving the 3D Ising model with the conformal bootstrap, Phys. Rev. D 86 (2012) 025022 [arXiv:1203.6064] [INSPIRE].ADSGoogle Scholar
  2. [2]
    F. Kos, D. Poland and D. Simmons-Duffin, Bootstrapping the O(N) vector models, JHEP 06 (2014) 091 [arXiv:1307.6856] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  3. [3]
    S. El-Showk et al., Solving the 3d Ising model with the conformal bootstrap II. c-minimization and precise critical exponents, J. Stat. Phys. 157 (2014) 869 [arXiv:1403.4545] [INSPIRE].
  4. [4]
    F. Kos, D. Poland and D. Simmons-Duffin, Bootstrapping mixed correlators in the 3D Ising model, JHEP 11 (2014) 109 [arXiv:1406.4858] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  5. [5]
    F. Kos, D. Poland, D. Simmons-Duffin and A. Vichi, Bootstrapping the O(N) archipelago, JHEP 11 (2015) 106 [arXiv:1504.07997] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    F. Kos, D. Poland, D. Simmons-Duffin and A. Vichi, Precision Islands in the Ising and O(N) models, JHEP 08 (2016) 036 [arXiv:1603.04436] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    D. Poland andD. Simmons-Duffin, The conformal bootstrap, Nature Phys. 12 (2016) 535.Google Scholar
  8. [8]
    D. Poland, S. Rychkov and A. Vichi, The conformal bootstrap: theory, numerical techniques and applications, arXiv:1805.04405 [INSPIRE].
  9. [9]
    L. Iliesiu et al., Bootstrapping 3D fermions, JHEP 03 (2016) 120 [arXiv:1508.00012] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    L. Iliesiu et al., Bootstrapping 3D fermions with global symmetries, JHEP 01 (2018) 036 [arXiv:1705.03484] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    T. Grover, D.N. Sheng and A. Vishwanath, Emergent space-time supersymmetry at the boundary of a topological phase, Science 344 (2014) 280 [arXiv:1301.7449] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    L. Fei, S. Giombi, I.R. Klebanov and G. Tarnopolsky, Yukawa CFTs and emergent supersymmetry, PTEP 2016 (2016) 12C105 [arXiv:1607.05316] [INSPIRE].
  13. [13]
    N. Zerf et al., Four-loop critical exponents for the Gross-Neveu-Yukawa models, Phys. Rev. D 96 (2017) 096010 [arXiv:1709.05057] [INSPIRE].Google Scholar
  14. [14]
    B. Ihrig, L.N. Mihaila and M.M. Scherer, Critical behavior of Dirac fermions from perturbative renormalization, Phys. Rev. B 98 (2018) 125109 [arXiv:1806.04977] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    J.-H. Park, Superconformal symmetry in three-dimensions, J. Math. Phys. 41 (2000) 7129 [hep-th/9910199] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    J. Rong and N. Su, Bootstrapping minimal \( \mathcal{N} \) = 1 superconformal field theory in three dimensions, arXiv:1807.04434 [INSPIRE].
  17. [17]
    D. Simmons-Duffin, A semidefinite program solver for the conformal bootstrap, JHEP 06 (2015) 174 [arXiv:1502.02033] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    T. Ohtsuki, CBoot: a Sage module to create (convolved) conformal block table,
  19. [19]
    D. Bashkirov, Bootstrapping the \( \mathcal{N} \) = 1 SCFT in three dimensions, arXiv:1310.8255 [INSPIRE].
  20. [20]
    Z. Li and N. Su, 3D CFT archipelago from single correlator bootstrap, arXiv:1706.06960 [INSPIRE].
  21. [21]
    D. Poland and D. Simmons-Duffin, Bounds on 4D conformal and superconformal field theories, JHEP 05 (2011) 017 [arXiv:1009.2087] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    S. El-Showk and M.F. Paulos, Bootstrapping conformal field theories with the extremal functional method, Phys. Rev. Lett. 111 (2013) 241601 [arXiv:1211.2810] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    L. Iliesiu et al., Fermion-scalar conformal blocks, JHEP 04 (2016) 074 [arXiv:1511.01497] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  24. [24]
    A. Dymarsky et al., The 3d stress-tensor bootstrap, JHEP 02 (2018) 164 [arXiv:1708.05718] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  25. [25]
    A.L. Fitzpatrick, J. Kaplan, D. Poland and D. Simmons-Duffin, The analytic bootstrap and AdS superhorizon locality, JHEP 12 (2013) 004 [arXiv:1212.3616] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    Z. Komargodski and A. Zhiboedov, Convexity and liberation at large spin, JHEP 11 (2013) 140 [arXiv:1212.4103] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    L.F. Alday, A. Bissi and T. Lukowski, Large spin systematics in CFT, JHEP 11 (2015) 101 [arXiv:1502.07707] [INSPIRE].ADSzbMATHGoogle Scholar
  28. [28]
    L.F. Alday and A. Zhiboedov, Conformal bootstrap with slightly broken higher spin symmetry, JHEP 06 (2016) 091 [arXiv:1506.04659] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    L.F. Alday and A. Zhiboedov, An algebraic approach to the analytic bootstrap, JHEP 04 (2017) 157 [arXiv:1510.08091] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    L.F. Alday, Large spin perturbation theory for conformal field theories, Phys. Rev. Lett. 119 (2017) 111601 [arXiv:1611.01500] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    D. Simmons-Duffin, The lightcone bootstrap and the spectrum of the 3d Ising CFT, JHEP 03 (2017) 086 [arXiv:1612.08471] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    S. Caron-Huot, Analyticity in spin in conformal theories, JHEP 09 (2017) 078 [arXiv:1703.00278] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    D. Simmons-Duffin, D. Stanford and E. Witten, A spacetime derivation of the Lorentzian OPE inversion formula, JHEP 07 (2018) 085 [arXiv:1711.03816] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  34. [34]
    S. El-Showk et al., Conformal field theories in fractional dimensions, Phys. Rev. Lett. 112 (2014) 141601 [arXiv:1309.5089] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    A.A. Nizami, T. Sharma and V. Umesh, Superspace formulation and correlation functions of 3d superconformal field theories, JHEP 07 (2014) 022 [arXiv:1308.4778] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    E.I. Buchbinder, S.M. Kuzenko and I.B. Samsonov, Superconformal field theory in three dimensions: correlation functions of conserved currents, JHEP 06 (2015) 138 [arXiv:1503.04961] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    A. Atanasov, A. Hillman and D. Poland,
  38. [38]

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of PhysicsYale UniversityNew HavenU.S.A.
  2. 2.Walter Burke Institute for Theoretical PhysicsCaltechPasadenaU.S.A.

Personalised recommendations