Advertisement

Journal of High Energy Physics

, 2018:135 | Cite as

New 3d \( \mathcal{N} \) = 2 dualities from quadratic monopoles

  • Antonio Amariti
  • Ivan Garozzo
  • Noppadol Mekareeya
Open Access
Regular Article - Theoretical Physics

Abstract

Aspects of three dimensional \( \mathcal{N} \) = 2 gauge theories with monopole super-potentials and their dualities are investigated. The moduli spaces of a number of such theories are studied using Hilbert series. Moreover, we propose new dualities involving quadratic powers for the monopole superpotentials, for unitary, symplectic and orthogonal gauge groups. These dualities are then tested using the three sphere partition function and matching of the Hilbert series. We also provide an argument for the obstruction to the duality for theories with quartic monopole superpotentials.

Keywords

Supersymmetry and Duality Solitons Monopoles and Instantons Supersymmetric Effective Theories 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J. de Boer, K. Hori, Y. Oz and Z. Yin, Branes and mirror symmetry in N = 2 supersymmetric gauge theories in three-dimensions, Nucl. Phys. B 502 (1997) 107 [hep-th/9702154] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    J. de Boer, K. Hori and Y. Oz, Dynamics of N = 2 supersymmetric gauge theories in three-dimensions, Nucl. Phys. B 500 (1997) 163 [hep-th/9703100] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    O. Aharony, A. Hanany, K.A. Intriligator, N. Seiberg and M.J. Strassler, Aspects of N = 2 supersymmetric gauge theories in three-dimensions, Nucl. Phys. B 499 (1997) 67 [hep-th/9703110] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    A. Karch, Seiberg duality in three-dimensions, Phys. Lett. B 405 (1997) 79 [hep-th/9703172] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    O. Aharony, IR duality in d = 3 N = 2 supersymmetric USp(2N(c)) and U(N(c)) gauge theories, Phys. Lett. B 404 (1997) 71 [hep-th/9703215] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    N. Seiberg, Electric-magnetic duality in supersymmetric nonAbelian gauge theories, Nucl. Phys. B 435 (1995) 129 [hep-th/9411149] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  7. [7]
    A. Armoni and V. Niarchos, Phases of QCD 3 from non-SUSY Seiberg Duality and Brane Dynamics, Phys. Rev. D 97 (2018) 106001 [arXiv:1711.04832] [INSPIRE].ADSGoogle Scholar
  8. [8]
    V. Bashmakov, J. Gomis, Z. Komargodski and A. Sharon, Phases of \( \mathcal{N} \) = 1 theories in 2 + 1 dimensions, JHEP 07 (2018) 123 [arXiv:1802.10130] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  9. [9]
    F. Benini and S. Benvenuti, \( \mathcal{N} \)=1 dualities in 2 + 1 dimensions, arXiv:1803.01784 [INSPIRE].
  10. [10]
    D. Gaiotto, Z. Komargodski and J. Wu, Curious Aspects of Three-Dimensional \( \mathcal{N} \) = 1 SCFTs, JHEP 08 (2018) 004 [arXiv:1804.02018] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  11. [11]
    F. Benini and S. Benvenuti, N = 1 QED in 2 + 1 dimensions: Dualities and enhanced symmetries, arXiv:1804.05707 [INSPIRE].
  12. [12]
    S. Giombi, S. Minwalla, S. Prakash, S.P. Trivedi, S.R. Wadia and X. Yin, Chern-Simons Theory with Vector Fermion Matter, Eur. Phys. J. C 72 (2012) 2112 [arXiv:1110.4386] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    O. Aharony, G. Gur-Ari and R. Yacoby, d = 3 Bosonic Vector Models Coupled to Chern-Simons Gauge Theories, JHEP 03 (2012) 037 [arXiv:1110.4382] [INSPIRE].
  14. [14]
    O. Aharony, G. Gur-Ari and R. Yacoby, Correlation Functions of Large N Chern-Simons-Matter Theories and Bosonization in Three Dimensions, JHEP 12 (2012) 028 [arXiv:1207.4593] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    O. Aharony, Baryons, monopoles and dualities in Chern-Simons-matter theories, JHEP 02 (2016) 093 [arXiv:1512.00161] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    N. Seiberg, T. Senthil, C. Wang and E. Witten, A Duality Web in 2 + 1 Dimensions and Condensed Matter Physics, Annals Phys. 374 (2016) 395 [arXiv:1606.01989] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    A.M. Polyakov, Quark Confinement and Topology of Gauge Groups, Nucl. Phys. B 120 (1977) 429 [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    I. Affleck, J.A. Harvey and E. Witten, Instantons and (Super)Symmetry Breaking in (2 + 1)-Dimensions, Nucl. Phys. B 206 (1982) 413 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    N. Dorey, D. Tong and S. Vandoren, Instanton effects in three-dimensional supersymmetric gauge theories with matter, JHEP 04 (1998) 005 [hep-th/9803065] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  20. [20]
    F. Benini, C. Closset and S. Cremonesi, Comments on 3d Seiberg-like dualities, JHEP 10 (2011) 075 [arXiv:1108.5373] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    O. Aharony, S.S. Razamat, N. Seiberg and B. Willett, 3d dualities from 4d dualities, JHEP 07 (2013) 149 [arXiv:1305.3924] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    O. Aharony, S.S. Razamat, N. Seiberg and B. Willett, 3d dualities from 4d dualities for orthogonal groups, JHEP 08 (2013) 099 [arXiv:1307.0511] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    T. Dimofte and D. Gaiotto, An E7 Surprise, JHEP 10 (2012) 129 [arXiv:1209.1404] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    S. Benvenuti and S. Pasquetti, 3d \( \mathcal{N} \) = 2 mirror symmetry, pq-webs and monopole superpotentials, JHEP 08 (2016) 136 [arXiv:1605.02675] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    A. Collinucci, S. Giacomelli and R. Valandro, T-branes, monopoles and S-duality, JHEP 10 (2017) 113 [arXiv:1703.09238] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    K. Maruyoshi and J. Song, \( \mathcal{N} \) = 1 deformations and RG flows of \( \mathcal{N} \) = 2 SCFTs, JHEP 02 (2017) 075 [arXiv:1607.04281] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    P. Agarwal, K. Maruyoshi and J. Song, \( \mathcal{N} \) = 1 Deformations and RG flows of \( \mathcal{N} \) = 2 SCFTs, part II: non-principal deformations, JHEP 12 (2016) 103 [Addendum ibid. 04 (2017) 113] [arXiv:1610.05311] [INSPIRE].
  28. [28]
    P. Agarwal, A. Sciarappa and J. Song, \( \mathcal{N} \) = 1 Lagrangians for generalized Argyres-Douglas theories, JHEP 10 (2017) 211 [arXiv:1707.04751] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    S. Benvenuti and S. Giacomelli, Supersymmetric gauge theories with decoupled operators and chiral ring stability, Phys. Rev. Lett. 119 (2017) 251601 [arXiv:1706.02225] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    S. Benvenuti and S. Giacomelli, Abelianization and sequential confinement in 2 + 1 dimensions, JHEP 10 (2017) 173 [arXiv:1706.04949] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    S. Benvenuti and S. Giacomelli, Lagrangians for generalized Argyres-Douglas theories, JHEP 10 (2017) 106 [arXiv:1707.05113] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    N. Aghaei, A. Amariti and Y. Sekiguchi, Notes on Integral Identities for 3d Supersymmetric Dualities, JHEP 04 (2018) 022 [arXiv:1709.08653] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    S. Giacomelli and N. Mekareeya, Mirror theories of 3d \( \mathcal{N} \) = 2 SQCD, JHEP 03 (2018) 126 [arXiv:1711.11525] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    M.S. Block, R.G. Melko and R.K. Kaul, Fate of ℂN − 1 Fixed Points with q Monopoles, Phys. Rev. Lett. 111 (2013) 137202 [arXiv:1307.0519] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    F. Benini, S. Benvenuti and S. Pasquetti, SUSY monopole potentials in 2 + 1 dimensions, JHEP 08 (2017) 086 [arXiv:1703.08460] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    S. Cremonesi, A. Hanany and A. Zaffaroni, Monopole operators and Hilbert series of Coulomb branches of 3d \( \mathcal{N} \) = 4 gauge theories, JHEP 01 (2014) 005 [arXiv:1309.2657] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    S. Cremonesi, The Hilbert series of 3d \( \mathcal{N} \) = 2 Yang-Mills theories with vectorlike matter, J. Phys. A 48 (2015) 455401 [arXiv:1505.02409] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  38. [38]
    A. Hanany, C. Hwang, H. Kim, J. Park and R.-K. Seong, Hilbert Series for Theories with Aharony Duals, JHEP 11 (2015) 132 [arXiv:1505.02160] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    S. Cremonesi, N. Mekareeya and A. Zaffaroni, The moduli spaces of 3d \( \mathcal{N} \) ≥ 2 Chern-Simons gauge theories and their Hilbert series, JHEP 10 (2016) 046 [arXiv:1607.05728] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    S. Cremonesi, 3d supersymmetric gauge theories and Hilbert series, Proc. Symp. Pure Math. 98 (2018) 21 [arXiv:1701.00641] [INSPIRE].MathSciNetGoogle Scholar
  41. [41]
    D.L. Jafferis, The Exact Superconformal R-Symmetry Extremizes Z, JHEP 05 (2012) 159 [arXiv:1012.3210] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    N. Hama, K. Hosomichi and S. Lee, Notes on SUSY Gauge Theories on Three-Sphere, JHEP 03 (2011) 127 [arXiv:1012.3512] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    N. Hama, K. Hosomichi and S. Lee, SUSY Gauge Theories on Squashed Three-Spheres, JHEP 05 (2011) 014 [arXiv:1102.4716] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    A. Kapustin, B. Willett and I. Yaakov, Exact Results for Wilson Loops in Superconformal Chern-Simons Theories with Matter, JHEP 03 (2010) 089 [arXiv:0909.4559] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    A. Kapustin, B. Willett and I. Yaakov, Nonperturbative Tests of Three-Dimensional Dualities, JHEP 10 (2010) 013 [arXiv:1003.5694] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    K.A. Intriligator and P. Pouliot, Exact superpotentials, quantum vacua and duality in supersymmetric SP(N(c)) gauge theories, Phys. Lett. B 353 (1995) 471 [hep-th/9505006] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    J. Gray, A. Hanany, Y.-H. He, V. Jejjala and N. Mekareeya, SQCD: A Geometric Apercu, JHEP 05 (2008) 099 [arXiv:0803.4257] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    A. Giveon and D. Kutasov, Seiberg Duality in Chern-Simons Theory, Nucl. Phys. B 812 (2009) 1 [arXiv:0808.0360] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. [49]
    A. Amariti and C. Klare, Chern-Simons and RG Flows: Contact with Dualities, JHEP 08 (2014) 144 [arXiv:1405.2312] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  50. [50]
    A. Hanany and N. Mekareeya, Counting Gauge Invariant Operators in SQCD with Classical Gauge Groups, JHEP 10 (2008) 012 [arXiv:0805.3728] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  51. [51]
    O. Aharony and I. Shamir, On O(N c) d = 3 N = 2 supersymmetric QCD Theories, JHEP 12 (2011) 043 [arXiv:1109.5081] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  52. [52]
    K. Intriligator and N. Seiberg, Aspects of 3d N = 2 Chern-Simons-Matter Theories, JHEP 07 (2013) 079 [arXiv:1305.1633] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  53. [53]
    C. Closset, T.T. Dumitrescu, G. Festuccia, Z. Komargodski and N. Seiberg, Contact Terms, Unitarity and F-Maximization in Three-Dimensional Superconformal Theories, JHEP 10 (2012) 053 [arXiv:1205.4142] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  54. [54]
    C. Closset, T.T. Dumitrescu, G. Festuccia, Z. Komargodski and N. Seiberg, Comments on Chern-Simons Contact Terms in Three Dimensions, JHEP 09 (2012) 091 [arXiv:1206.5218] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  55. [55]
    K.A. Intriligator and N. Seiberg, Duality, monopoles, dyons, confinement and oblique confinement in supersymmetric SO(N(c)) gauge theories, Nucl. Phys. B 444 (1995) 125 [hep-th/9503179] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  56. [56]
    V.P. Spiridonov and G.S. Vartanov, Elliptic hypergeometry of supersymmetric dualities II. Orthogonal groups, knots and vortices, Commun. Math. Phys. 325 (2014) 421 [arXiv:1107.5788] [INSPIRE].
  57. [57]
    D. Kutasov, A. Parnachev and D.A. Sahakyan, Central charges and U(1)(R) symmetries in N = 1 superYang-Mills, JHEP 11 (2003) 013 [hep-th/0308071] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    P. Agarwal, A. Amariti and M. Siani, Refined Checks and Exact Dualities in Three Dimensions, JHEP 10 (2012) 178 [arXiv:1205.6798] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  59. [59]
    B.R. Safdi, I.R. Klebanov and J. Lee, A Crack in the Conformal Window, JHEP 04 (2013) 165 [arXiv:1212.4502] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  60. [60]
    A. Amariti, D. Forcella, C. Klare, D. Orlando and S. Reffert, The braneology of 3D dualities, J. Phys. A 48 (2015) 265401 [arXiv:1501.06571] [INSPIRE].ADSzbMATHGoogle Scholar
  61. [61]
    A. Amariti, D. Forcella, C. Klare, D. Orlando and S. Reffert, 4D/3D reduction of dualities: mirrors on the circle, JHEP 10 (2015) 048 [arXiv:1504.02783] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  62. [62]
    A. Amariti, D. Orlando and S. Reffert, Monopole Quivers and new 3D N = 2 dualities, Nucl. Phys. B 924 (2017) 153 [arXiv:1705.09297] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Antonio Amariti
    • 1
  • Ivan Garozzo
    • 2
    • 3
  • Noppadol Mekareeya
    • 2
    • 4
  1. 1.INFN, Sezione di MilanoMilanoItaly
  2. 2.INFN, sezione di Milano-BicoccaMilanoItaly
  3. 3.Dipartimento di FisicaUniversità di Milano-BicoccaMilanoItaly
  4. 4.Department of Physics, Faculty of ScienceChulalongkorn UniversityBangkokThailand

Personalised recommendations