# Nonrelativistic string theory and T-duality

## Abstract

Nonrelativistic string theory in flat spacetime is described by a two-dimensional quantum field theory with a nonrelativistic global symmetry acting on the worldsheet fields. Nonrelativistic string theory is unitary, ultraviolet complete and has a string spectrum and spacetime S-matrix enjoying nonrelativistic symmetry. The worldsheet theory of nonrelativistic string theory is coupled to a curved spacetime background and to a Kalb-Ramond two-form and dilaton field. The appropriate spacetime geometry for nonrelativistic string theory is dubbed string Newton-Cartan geometry, which is distinct from Riemannian geometry. This defines the sigma model of nonrelativistic string theory describing strings propagating and interacting in curved background fields. We also implement T-duality transformations in the path integral of this sigma model and uncover the spacetime interpretation of T-duality. We show that T-duality along the longitudinal direction of the string Newton-Cartan geometry describes relativistic string theory on a Lorentzian geometry with a compact lightlike isometry, which is otherwise only defined by a subtle infinite boost limit. This relation provides a first principles definition of string theory in the discrete light cone quantization (DLCQ) in an arbitrary background, a quantization that appears in nonperturbative approaches to quantum field theory and string/M-theory, such as in Matrix theory. T-duality along a transverse direction of the string Newton-Cartan geometry equates nonrelativistic string theory in two distinct, T-dual backgrounds.

## Keywords

String Duality Sigma Models Bosonic Strings Classical Theories of Gravity## Notes

### **Open Access**

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

## References

- [1]J. Gomis and H. Ooguri,
*Nonrelativistic closed string theory*,*J. Math. Phys.***42**(2001) 3127 [hep-th/0009181] [INSPIRE]. - [2]I.R. Klebanov and J.M. Maldacena,
*(1+1)-dimensional NCOS and its U(N) gauge theory dual*,*Int. J. Mod. Phys.***A 16**(2001) 922 [hep-th/0006085] [INSPIRE]. - [3]U.H. Danielsson, A. Guijosa and M. Kruczenski,
*IIA/B, wound and wrapped*,*JHEP***10**(2000) 020 [hep-th/0009182] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [4]J. Gomis, J. Gomis and K. Kamimura,
*Non-relativistic superstrings: a new soluble sector of AdS*_{5}×*S*^{5},*JHEP***12**(2005) 024 [hep-th/0507036] [INSPIRE]. - [5]R. Andringa, E. Bergshoeff, J. Gomis and M. de Roo,
*‘Stringy’ Newton-Cartan gravity*,*Class. Quant. Grav.***29**(2012) 235020 [arXiv:1206.5176] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [6]E. Bergshoeff, J. Gomis, J. Rosseel, C. Şimsek and Z. Yan, in preparation, (2018).Google Scholar
- [7]C. Batlle, J. Gomis and D. Not,
*Extended Galilean symmetries of non-relativistic strings*,*JHEP***02**(2017) 049 [arXiv:1611.00026] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [8]J. Gomis and P.K. Townsend,
*The Galilean superstring*,*JHEP***02**(2017) 105 [arXiv:1612.02759] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [9]C. Batlle, J. Gomis, L. Mezincescu and P.K. Townsend,
*Tachyons in the Galilean limit*,*JHEP***04**(2017) 120 [arXiv:1702.04792] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [10]T. Harmark, J. Hartong and N.A. Obers,
*Nonrelativistic strings and limits of the AdS/CFT correspondence*,*Phys. Rev.***D 96**(2017) 086019 [arXiv:1705.03535] [INSPIRE]. - [11]J. Klusoň,
*Remark about non-relativistic string in Newton-Cartan background and null reduction*,*JHEP***05**(2018) 041 [arXiv:1803.07336] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [12]T. Banks, W. Fischler, S.H. Shenker and L. Susskind,
*M theory as a matrix model: a conjecture*,*Phys. Rev.***D 55**(1997) 5112 [hep-th/9610043] [INSPIRE]. - [13]
- [14]N. Seiberg,
*Why is the matrix model correct?*,*Phys. Rev. Lett.***79**(1997) 3577 [hep-th/9710009] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [15]A. Sen,
*D*0*-branes on T*^{n}*and matrix theory*,*Adv. Theor. Math. Phys.***2**(1998) 51 [hep-th/9709220] [INSPIRE]. - [16]S. Hellerman and J. Polchinski,
*Compactification in the lightlike limit*,*Phys. Rev.***D 59**(1999) 125002 [hep-th/9711037] [INSPIRE]. - [17]A. Bagchi and R. Gopakumar,
*Galilean conformal algebras and AdS/CFT*,*JHEP***07**(2009) 037 [arXiv:0902.1385] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [18]J. Brugues, T. Curtright, J. Gomis and L. Mezincescu,
*Non-relativistic strings and branes as non-linear realizations of Galilei groups*,*Phys. Lett.***B 594**(2004) 227 [hep-th/0404175] [INSPIRE]. - [19]J. Brugues, J. Gomis and K. Kamimura,
*Newton-Hooke algebras, non-relativistic branes and generalized pp-wave metrics*,*Phys. Rev.***D 73**(2006) 085011 [hep-th/0603023] [INSPIRE]. - [20]
- [21]C.G. Callan Jr., E.J. Martinec, M.J. Perry and D. Friedan,
*Strings in background fields*,*Nucl. Phys.***B 262**(1985) 593 [INSPIRE]. - [22]M. Roček and E.P. Verlinde,
*Duality, quotients and currents*,*Nucl. Phys.***B 373**(1992) 630 [hep-th/9110053] [INSPIRE]. - [23]T.H. Buscher,
*Path integral derivation of quantum duality in nonlinear σ-models*,*Phys. Lett.***B 201**(1988) 466 [INSPIRE]. - [24]T.H. Buscher,
*A symmetry of the string background field equations*,*Phys. Lett.***B 194**(1987) 59 [INSPIRE]. - [25]S.M. Ko, C. Melby-Thompson, R. Meyer and J.-H. Park,
*Dynamics of perturbations in double field theory & non-relativistic string theory*,*JHEP***12**(2015) 144 [arXiv:1508.01121] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar - [26]K. Morand and J.-H. Park,
*Classification of non-Riemannian doubled-yet-gauged spacetime*,*Eur. Phys. J.***C 77**(2017) 685 [arXiv:1707.03713] [INSPIRE].